Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Adaptive Stabilization of Nonlinear Stochastic Systems

Journal Article · · Applied Mathematics and Optimization
DOI:https://doi.org/10.1007/S002459900084· OSTI ID:21064296
 [1]
  1. URA CNRS No. 399, Departement de Mathematiques, UFR MIM, Universite de Metz, Ile du Saulcy, F 57045 Metz Cedex (France)

The purpose of this paper is to study the problem of asymptotic stabilization in probability of nonlinear stochastic differential systems with unknown parameters. With this aim, we introduce the concept of an adaptive control Lyapunov function for stochastic systems and we use the stochastic version of Artstein's theorem to design an adaptive stabilizer. In this framework the problem of adaptive stabilization of a nonlinear stochastic system is reduced to the problem of asymptotic stabilization in probability of a modified system. The design of an adaptive control Lyapunov function is illustrated by the example of adaptively quadratically stabilizable in probability stochastic differential systems.

OSTI ID:
21064296
Journal Information:
Applied Mathematics and Optimization, Journal Name: Applied Mathematics and Optimization Journal Issue: 1 Vol. 38; ISSN 0095-4616
Country of Publication:
United States
Language:
English

Similar Records

Lyapunov Stabilizability of Controlled Diffusions via a Superoptimality Principle for Viscosity Solutions
Journal Article · Sat Jan 14 23:00:00 EST 2006 · Applied Mathematics and Optimization · OSTI ID:21064215

On Stabilization of Nonautonomous Nonlinear Systems
Journal Article · Thu Oct 30 00:00:00 EDT 2008 · AIP Conference Proceedings · OSTI ID:21251630

Designing a Stochastic Adaptive Impulsive Observer for Stochastic Linear and Nonlinear Impulsive Systems
Journal Article · Tue Nov 29 23:00:00 EST 2011 · AIP Conference Proceedings · OSTI ID:21608506