skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Analysis Of Dynamic Dent Resistance Of Auto Body Panel

Abstract

In automotive industry there is increasing demand for higher quality exterior panels, better functional properties and lower weight. The demand for weight reduction has led to thinner sheets, greater use of high strength steels and a change from steel to aluminum grades. This thickness reduction, which causes decrease in the dent resistance, promoted examination of the dent resistance against static and dynamic concentrated loads. This paper describes an investigation of the suitability of explicit dynamic FE analysis as a mean to determine the dynamic dent properties of the panel. This investigation is carried out on the body panel of utility vehicle and covers two parts, in first experimental analysis is carried out on developed test rig, which is interfaced with the computer. This test rig measures deflection with accuracy of .001mm. The experimental results are then compared with the simulation results, which is the second part. Simulation is carried with non-linear transient dynamic explicit analysis using Ansys -Ls Dyna. The experimental results show great accuracy with simulation results. The effect of change in thickness and geometry of the existing fender is then studied with help of simulation technique. By considering the best possible option overall weight of fender is reducedmore » by 7.07 % by keeping the dent resistance of the panel constant.« less

Authors:
 [1];  [2]
  1. Department of Mechanical Engineering, Gramin Polytechnic, Vishnupuri, Nanded-431606, Maharashtra (India)
  2. Department of Production Engineering, S.G.G.S. Institute of Engg. and Tech., Vishnupuri, Nanded-431606, Maharashtra (India)
Publication Date:
OSTI Identifier:
21057020
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 907; Journal Issue: 1; Conference: 10. ESAFORM conference on material forming, Zaragoza (Spain), 18-20 Apr 2007; Other Information: DOI: 10.1063/1.2729520; (c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ALUMINIUM; ALUMINIUM ALLOYS; COMPUTERIZED SIMULATION; FINITE ELEMENT METHOD; HARDNESS; NONLINEAR PROBLEMS; SHEETS; STEELS; TESTING; TRANSIENTS

Citation Formats

Deolgaonkar, S. S., and Nandedkar, V. M. Analysis Of Dynamic Dent Resistance Of Auto Body Panel. United States: N. p., 2007. Web. doi:10.1063/1.2729520.
Deolgaonkar, S. S., & Nandedkar, V. M. Analysis Of Dynamic Dent Resistance Of Auto Body Panel. United States. doi:10.1063/1.2729520.
Deolgaonkar, S. S., and Nandedkar, V. M. Sat . "Analysis Of Dynamic Dent Resistance Of Auto Body Panel". United States. doi:10.1063/1.2729520.
@article{osti_21057020,
title = {Analysis Of Dynamic Dent Resistance Of Auto Body Panel},
author = {Deolgaonkar, S. S. and Nandedkar, V. M.},
abstractNote = {In automotive industry there is increasing demand for higher quality exterior panels, better functional properties and lower weight. The demand for weight reduction has led to thinner sheets, greater use of high strength steels and a change from steel to aluminum grades. This thickness reduction, which causes decrease in the dent resistance, promoted examination of the dent resistance against static and dynamic concentrated loads. This paper describes an investigation of the suitability of explicit dynamic FE analysis as a mean to determine the dynamic dent properties of the panel. This investigation is carried out on the body panel of utility vehicle and covers two parts, in first experimental analysis is carried out on developed test rig, which is interfaced with the computer. This test rig measures deflection with accuracy of .001mm. The experimental results are then compared with the simulation results, which is the second part. Simulation is carried with non-linear transient dynamic explicit analysis using Ansys -Ls Dyna. The experimental results show great accuracy with simulation results. The effect of change in thickness and geometry of the existing fender is then studied with help of simulation technique. By considering the best possible option overall weight of fender is reduced by 7.07 % by keeping the dent resistance of the panel constant.},
doi = {10.1063/1.2729520},
journal = {AIP Conference Proceedings},
number = 1,
volume = 907,
place = {United States},
year = {Sat Apr 07 00:00:00 EDT 2007},
month = {Sat Apr 07 00:00:00 EDT 2007}
}
  • A finite-element model is presented for the analysis of surface roughening of aluminum sheet metal. A hybrid finite-element model is developed which accounts for the elasto-viscoplastic constitutive response of a single crystallographic orientation. Initialization of a finite-element mesh representing several grains is performed using data gathered through automated collection of backscattered Kikuchi diffraction data. To handle a region that contains sufficient variation (contains numerous distinct grains), the implementation is carried out using distributed computation strategies. Application is made to 6111-T4 sheet metal intended for auto body applications. The numerical simulations are complemented with mechanical testing in plane strain and biaxialmore » sketch. Based on the simulation results, there are two conclusions that can be drawn concerning the action of surface gains deforming through crystallographic slip. One is that grains can act collectively to form localized regions of thinning. The other is that grain interactions can lead to behavior which is different from that expected if grains deform with the average (macroscale) strain. Neighbor interactions can alter the deformation from that computed using the macroscale deformation rate.« less
  • The adult rat survives a lethal dose of x rays if placed in a box, before irradiation, where the oxygen tension of the air he breathes can be lowered. (tr-auth)
  • Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO{sub 2} emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model aremore » flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.« less
  • A general method for the dynamic analysis of multi-body offshore structures is presented, based on a constraint matrix approach. A method of deriving the constraint matrix for a general structure is given, and used to derive the equations of motion of a whole system from those of it's component parts. The response of the system to both first and second order random wave forces is found and used to calculate the forces and moments in the connecting mechanisms.
  • Purpose: We have used dynamic conformal multiple arc therapy (DCMAT) for stereotactic body radiotherapy (SBRT) since 2001. We investigated the consistency of DCMAT for SBRT using dose-volume histogram analysis. Methods and Materials: A total of 50 patients with peripheral lung tumors underwent SBRT. The median tumor diameter was 2.4 cm (range, 0.9-5.9). Treatment planning was performed using a superposition algorithm. The prescribed 50 Gy dose was divided into five fractions. The prescribed dose was defined as 80% of the maximal dose in the planning target volume (PTV), and the leaf margins were modified to ensure the PTV was included inmore » the 80% isodose surface. The dose-volume histogram analysis was used to assess the PTV and normal lung volume. Results: The median dose covering 95% of the PTV was 50.27 Gy (range, 46.14-52.67), essentially consistent with the prescribed dose. The median homogeneity and conformity index was 1.41 (range, 1.31-1.53) and 1.73 (range, 1.41-2.21), respectively. The median volume of lung receiving {>=}20 Gy (V{sub 20}) was 4.2% (range, 1.4-10.2%). A linear correlation was found between the tumor diameter and V{sub 20}, and an even stronger correlation was found between the PTV/(normal lung volume) and V{sub 20}. The estimated V{sub 20} was 7.1% (range, 3.9-10.4%) for a 5-cm-diameter tumor, assumed to be the maximal size limitation for SBRT. Conclusion: SBRT with DCMAT achieved high conformity and delivered adequate doses within the PTV. The median dose covering 95% of the PTV was consistent with the prescribed dose. V{sub 20} can be estimated using the tumor diameter and normal lung volume. DCMAT was thus both a feasible and a reproducible method of SBRT delivery.« less