skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rescriptive and Descriptive Gauge Symmetry in Finite-Dimensional Dynamical Systems

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.2710043· OSTI ID:21054796
 [1]
  1. Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel)

Gauge theories in physics constitute a fundamental tool for modeling interactions among electromagnetic, weak and strong forces. They have been used in a myriad of fields, ranging from sub-atomic physics to cosmology. The basic mathematical tool generating the gauge theories is that of symmetry, i.e. a redundancy in the description of the system. Although symmetries have long been recognized as a fundamental tool for solving ordinary differential equations, they have not been formally categorized as gauge theories. In this paper, we show how simple systems described by ordinary differential equations are prone to exhibit gauge symmetry, and discuss a few practical applications of this approach. In particular, we utilize the notion of gauge symmetry to question some common engineering misconceptions of chaotic and stochastic phenomena, and show that seemingly 'disordered' (deterministic) or 'random' (stochastic) behaviors can be 'ordered'. This brings into play the notion of observation; we show that temporal observations may be misleading when used for chaos detection. From a practical standpoint, we use gauge symmetry to considerably mitigate the numerical truncation error of numerical integrations.

OSTI ID:
21054796
Journal Information:
AIP Conference Proceedings, Vol. 886, Issue 1; Conference: 3. international conference on new trends in astrodynamics and applications, Princeton, NJ (United States), 16-18 Aug 2006; Other Information: DOI: 10.1063/1.2710043; (c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English