skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hard X-ray Wiggler Front End Filter Design

Abstract

The front end filter design and implementation for the new HARWI-II hard X-ray wiggler at DORIS-III at HASYLAB/DESY is presented. The device emits a total power of 30 kW at 150mA storage ring current. The beam has a horizontal width of 3.8mrad and a central power density of 54 W/mm2 at 26m distance to the source. The filter section located in the ring tunnel has been introduced to tailor the thermal loads at the downstream optical components. The high power density and the high total power at the filter section are handled with a layered design. Glassy carbon filters convert the absorbed power into thermal radiation to lower the heat load to an acceptable level for water cooled copper filters. The requirements in beam size and filtering are addressed by separating the filter functions in three units which are switched individually into the beam.

Authors:
;  [1]
  1. Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22603 Hamburg (Germany)
Publication Date:
OSTI Identifier:
21049197
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 879; Journal Issue: 1; Conference: 9. international conference on synchrotron radiation instrumentation, Daegu (Korea, Republic of), 28 May - 2 Jun 2006; Other Information: DOI: 10.1063/1.2436241; (c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; BEAM CURRENTS; BEAM OPTICS; CARBON; COPPER; DESIGN; DESY; HARD X RADIATION; HEATING LOAD; IMPLEMENTATION; OPTICAL FILTERS; POWER DENSITY; STORAGE RINGS; THERMAL RADIATION

Citation Formats

Schulte-Schrepping, Horst, and Hahn, Ulrich. Hard X-ray Wiggler Front End Filter Design. United States: N. p., 2007. Web. doi:10.1063/1.2436241.
Schulte-Schrepping, Horst, & Hahn, Ulrich. Hard X-ray Wiggler Front End Filter Design. United States. doi:10.1063/1.2436241.
Schulte-Schrepping, Horst, and Hahn, Ulrich. Fri . "Hard X-ray Wiggler Front End Filter Design". United States. doi:10.1063/1.2436241.
@article{osti_21049197,
title = {Hard X-ray Wiggler Front End Filter Design},
author = {Schulte-Schrepping, Horst and Hahn, Ulrich},
abstractNote = {The front end filter design and implementation for the new HARWI-II hard X-ray wiggler at DORIS-III at HASYLAB/DESY is presented. The device emits a total power of 30 kW at 150mA storage ring current. The beam has a horizontal width of 3.8mrad and a central power density of 54 W/mm2 at 26m distance to the source. The filter section located in the ring tunnel has been introduced to tailor the thermal loads at the downstream optical components. The high power density and the high total power at the filter section are handled with a layered design. Glassy carbon filters convert the absorbed power into thermal radiation to lower the heat load to an acceptable level for water cooled copper filters. The requirements in beam size and filtering are addressed by separating the filter functions in three units which are switched individually into the beam.},
doi = {10.1063/1.2436241},
journal = {AIP Conference Proceedings},
number = 1,
volume = 879,
place = {United States},
year = {Fri Jan 19 00:00:00 EST 2007},
month = {Fri Jan 19 00:00:00 EST 2007}
}
  • The design considerations and technical details for components of the front end of a Photon Factory 53-pole wiggler/undulator beamline are described. Special attention is paid to the handling of the high-power densities produced by the wiggler.
  • We present a protocol for the design of an illumination system (front end) for a soft-x-ray projection lithography tool. The protocol is illustrated by specific front-end designs. The most complete design analysis is for a laser-driven system. Other drivers; undulator, synchrotron orbital radiation, and plasma discharge, are also discussed.
  • The construction of the wiggler W2 at DORIS is described together with the major components of the beamline. Details are given on the assembly and performance of the magnet structure. Three different monochromators are used in the beamline alternatively. One of them, a Laue--Bragg-type monochromator is described in more detail.
  • A 4 m long hard X-ray wiggler has been built and installed in the DORIS III storage ring at DESY. The device replaces an old wiggler especially designed for angiography studies. Future use of this beamline at the HARWI straight section has been dedicated to hard X-ray scattering and diffraction experiments for material science and geological investigations. The required energy range is from 30 keV to about 200 keV with emphasis on the {approx}100 keV spectral range. The magnet configuration corresponds to a hybrid structure with additional side magnets to achieve a 2 T peak field for the specified periodmore » length of 110 mm. The wiggler position in the storage ring has been moved 8 m upstream into the next cell which allowed for reduction of the minimum magnetic wiggler gap to 14 mm.« less
  • The CLS 06ID-1 Hard X-ray Micro-Analysis Beamline (HXMA) is a general purpose hard X-ray spectroscopy beamline (5 to 40 keV) designed to serve users in XAFS, diffraction and microprobe communities. The beamline uses the synchrotron radiation from a superconducting wiggler. The primary beamline optics include a 1.2 m water-cooled silicon collimating mirror (separate Rh and Pt coating stripes), a liquid nitrogen cooled double crystal monochromator (Kohzu CMJ-1) housing two crystal pairs (Si 111 and 220), and a 1.15 m long water-cooled silicon toroidal focusing mirror (separate Rh and Pt coating stripes). All mirrors are equipped with dynamical meridian benders. Themore » experimental hutch hosts three experimental setups for XAFS, diffraction and microprobe, respectively. Primary design considerations and some commissioning results are discussed.« less