skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Impact of Increasing Margin Around the Lumpectomy Cavity to Define the Planning Target Volume for 3D Conformal External Beam Accelerated Partial Breast Irradiation

Abstract

The purpose of this study was to evaluate the dose to normal tissues as a function of increasing margins around the lumpectomy cavity in accelerated partial breast irradiation (APBI) using 3D-conformal radiotherapy (3DCRT). Eight patients with Stage 0-I breast cancer underwent treatment planning for 3DCRT APBI. The clinical target volume (CTV) was defined as a 15-mm expansion around the cavity limited by the chest wall and skin. Three planning target volumes (PTV1, PTV2, PTV3) were generated for each patient using a 0, 5-, and 10-mm expansion around the CTV, for a total margin of 15, 20, and 25 mm. Three treatment plans were generated for every patient using the 3 PTVs, and dose-volume analysis was performed for each plan. For each 5-mm increase in margin, the mean PTV:total breast volume ratio increased 10% and the relative increase in the mean ipsilateral breast dose was 15%. The mean volume of ipsilateral breast tissue receiving 75%, 50%, and 25% of the prescribed dose increased 6% to 7% for every 5 mm increase in PTV margin. Compared to lesions located in the upper outer quadrant, plans for medially located tumors revealed higher mean ipsilateral breast doses and 20% to 22% more ipsilateral breastmore » tissue encompassed by the 25% IDL. The use of 3DCRT for APBI delivers higher doses to normal breast tissue as the PTV increases around the lumpectomy cavity. Efforts should be made to minimize the overall PTV when this technique is used. Ongoing studies will be necessary to determine the clinical relevance of these findings.« less

Authors:
 [1];  [2];  [1];  [3]
  1. Department of Radiation Oncology, Stanford University, Stanford, CA (United States)
  2. Department of Radiation Oncology, Stanford University, Stanford, CA (United States), E-mail: kateh@stanford.edu
  3. Department of Surgery, Stanford University, Stanford, CA (United States)
Publication Date:
OSTI Identifier:
21045980
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Dosimetry; Journal Volume: 32; Journal Issue: 4; Other Information: DOI: 10.1016/j.meddos.2007.02.003; PII: S0958-3947(07)00047-7; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; CARCINOMAS; CHEST; IRRADIATION; MAMMARY GLANDS; PATIENTS; PLANNING; RADIATION DOSES; RADIOTHERAPY; SKIN

Citation Formats

Cox, Brett W., Horst, Kathleen C., Thornton, Sherri, and Dirbas, Frederick M.. Impact of Increasing Margin Around the Lumpectomy Cavity to Define the Planning Target Volume for 3D Conformal External Beam Accelerated Partial Breast Irradiation. United States: N. p., 2007. Web. doi:10.1016/j.meddos.2007.02.003.
Cox, Brett W., Horst, Kathleen C., Thornton, Sherri, & Dirbas, Frederick M.. Impact of Increasing Margin Around the Lumpectomy Cavity to Define the Planning Target Volume for 3D Conformal External Beam Accelerated Partial Breast Irradiation. United States. doi:10.1016/j.meddos.2007.02.003.
Cox, Brett W., Horst, Kathleen C., Thornton, Sherri, and Dirbas, Frederick M.. Mon . "Impact of Increasing Margin Around the Lumpectomy Cavity to Define the Planning Target Volume for 3D Conformal External Beam Accelerated Partial Breast Irradiation". United States. doi:10.1016/j.meddos.2007.02.003.
@article{osti_21045980,
title = {Impact of Increasing Margin Around the Lumpectomy Cavity to Define the Planning Target Volume for 3D Conformal External Beam Accelerated Partial Breast Irradiation},
author = {Cox, Brett W. and Horst, Kathleen C. and Thornton, Sherri and Dirbas, Frederick M.},
abstractNote = {The purpose of this study was to evaluate the dose to normal tissues as a function of increasing margins around the lumpectomy cavity in accelerated partial breast irradiation (APBI) using 3D-conformal radiotherapy (3DCRT). Eight patients with Stage 0-I breast cancer underwent treatment planning for 3DCRT APBI. The clinical target volume (CTV) was defined as a 15-mm expansion around the cavity limited by the chest wall and skin. Three planning target volumes (PTV1, PTV2, PTV3) were generated for each patient using a 0, 5-, and 10-mm expansion around the CTV, for a total margin of 15, 20, and 25 mm. Three treatment plans were generated for every patient using the 3 PTVs, and dose-volume analysis was performed for each plan. For each 5-mm increase in margin, the mean PTV:total breast volume ratio increased 10% and the relative increase in the mean ipsilateral breast dose was 15%. The mean volume of ipsilateral breast tissue receiving 75%, 50%, and 25% of the prescribed dose increased 6% to 7% for every 5 mm increase in PTV margin. Compared to lesions located in the upper outer quadrant, plans for medially located tumors revealed higher mean ipsilateral breast doses and 20% to 22% more ipsilateral breast tissue encompassed by the 25% IDL. The use of 3DCRT for APBI delivers higher doses to normal breast tissue as the PTV increases around the lumpectomy cavity. Efforts should be made to minimize the overall PTV when this technique is used. Ongoing studies will be necessary to determine the clinical relevance of these findings.},
doi = {10.1016/j.meddos.2007.02.003},
journal = {Medical Dosimetry},
number = 4,
volume = 32,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}
  • Purpose: Previous studies have shown that lumpectomy cavity volumes can change significantly in the weeks following surgery. The effect of this volume change on the surrounding tissue that constitutes the clinical target volume (CTV) for accelerated partial breast irradiation and boost treatment after whole breast irradiation has not been previously studied. In the present study, we used deformable registration to estimate the effect of lumpectomy cavity volume changes on the CTV for accelerated partial breast irradiation and discuss the implications for target construction. Methods and Materials: The data from 13 accelerated partial breast irradiation patients were retrospectively analyzed. Deformable registrationmore » was used to propagate contours from the initial planning computed tomography scan to a later computed tomography scan acquired at the start of treatment. The changes in cavity volume and CTV, distance between cavity and CTV contours (i.e., CTV margin), and CTV localization error after cavity registration were determined. Results: The mean {+-} standard deviation change in cavity volume and CTV between the two computed tomography scans was -35% {+-} 23% and -14% {+-} 12%, respectively. An increase in the cavity-to-CTV margin of 2 {+-} 2 mm was required to encompass the CTV, and this increase correlated with the cavity volume change. Because changes in the cavity and CTV were not identical, a localization error of 2-3 mm in the CTV center of mass occurred when the cavity was used as the reference for image guidance. Conclusion: Deformable registration suggested that CTV margins do not remain constant as the cavity volume changes. This finding has implications for planning target volume and CTV construction.« less
  • Purpose: To compare localization of the lumpectomy cavity by using breast surface matching vs. clips for image-guided external beam accelerated partial breast irradiation. Methods and Materials: Twenty-seven patients with breast cancer with two computed tomography (CT) scans each had three CT registrations performed: (1) to bony anatomy, (2) to the center of mass (COM) of surgical clips, and (3) to the breast surface. The cavity COM was defined in both the initial and second CT scans after each type of registration, and distances between COMs ({delta}COM{sub Bone}, {delta}COM{sub Clips}, and {delta}COM{sub Surface}) were determined. Smaller {delta}COMs were interpreted as bettermore » localizations. Correlation coefficients were calculated for {delta}COM vs. several variables. Results: The {delta}COM{sub Bone} (mean, 7 {+-} 2 [SD] mm) increased with breast volume (r = 0.4; p = 0.02) and distance from the chest wall (r = 0.5; p = 0.003). Relative to bony registration, clip registration provided better localization ({delta}COM{sub Clips} < {delta}COM{sub Bone}) in 25 of 27 cases. Breast surface matching improved cavity localization ({delta}COM{sub Surface} < {delta}COM{sub Bone}) in 19 of 27 cases. Mean improvements ({delta}COM{sub Bone} - {delta}COM{sub ClipsorSurface}) were 4 {+-} 3 and 2 {+-} 4 mm, respectively. In terms of percentage of improvement ([{delta}COM{sub Bone} - {delta}COM{sub ClipsorSurface}]/{delta}COM{sub Bone}), only surface matching showed a correlation with breast volume. Clip localization outperformed surface registration for cavities located superior to the breast COM. Conclusions: Use of either breast surface or surgical clips as surrogates for the cavity results in improved localization in most patients compared with bony registration and may allow smaller planning target volume margins for external beam accelerated partial breast irradiation. Compared with surface registration, clip registration may be less sensitive to anatomic characteristics and therefore more broadly applicable.« less
  • Purpose: We present our ongoing clinical experience utilizing three-dimensional (3D)-conformal radiation therapy (3D-CRT) to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer treated with breast-conserving therapy. Methods and Materials: Ninety-one consecutive patients were treated with APBI using our previously reported 3D-CRT technique. The clinical target volume consisted of the lumpectomy cavity plus a 10- to 15 -mm margin. The prescribed dose was 34 or 38.5 Gy in 10 fractions given over 5 consecutive days. The median follow-up was 24 months. Twelve patients have been followed for {>=}4 years, 20 for {>=}3.5 years, 29 for >3.0 years,more » 33 for {>=}2.5 years, and 46 for {>=}2.0 years. Results: No local recurrences developed. Cosmetic results were rated as good/excellent in 100% of evaluable patients at {>=} 6 months (n = 47), 93% at 1 year (n = 43), 91% at 2 years (n = 21), and in 90% at {>=}3 years (n = 10). Erythema, hyperpigmentation, breast edema, breast pain, telangiectasias, fibrosis, and fat necrosis were evaluated at 6, 24, and 36 months after treatment. All factors stabilized by 3 years posttreatment with grade I or II rates of 0%, 0%, 0%, 0%, 9%, 18%, and 9%, respectively. Only 2 patients (3%) developed grade III toxicity (breast pain), which resolved with time. Conclusions: Delivery of APBI with 3D-CRT resulted in minimal chronic ({>=}6 months) toxicity to date with good/excellent cosmetic results. Additional follow-up is needed to assess the long-term efficacy of this form of APBI.« less
  • Purpose: To determine to what extent the placement of surgical clips helps delineate the cavity in three-dimensional conformal accelerated partial-breast irradiation. Patients and Methods: Planning CT images of 100 lumpectomy cavities were reviewed in a cohort of 100 consecutive patients. The cavities were determined and categorized by two radiation oncologists according to cavity visualization score criteria and the breast density score. The two physicians first attempted to delineate the lumpectomy cavity without clips and then with clips. Results: In the case of high-density mammary tissue, the breast remodeling done during surgery does not enable the lumpectomy cavity to be sufficientlymore » visualized. The use of surgical clips significantly improved the ability to visualize the lumpectomy cavity, with a 69% rate of concordance between physicians regardless of the breast tissue density. Conclusion: The placement of surgical clips at lumpectomy enables visualization of the lumpectomy cavity and allows upgrading of the cavity visualization score on CT scans obtained for accelerated partial-breast irradiation treatment planning.« less
  • Purpose: Late toxicities and cosmetic analyses of patients treated with accelerated partial breast irradiation (APBI) on RTOG 0319 are presented. Methods and Materials: Patients with stages I to II breast cancer ≤3 cm, negative margins, and ≤3 positive nodes were eligible. Patients received three-dimensional conformal external beam radiation therapy (3D-CRT; 38.5 Gy in 10 fractions twice daily over 5 days). Toxicity and cosmesis were assessed by the patient (P), the radiation oncologist (RO), and the surgical oncologist (SO) at 3, 6, and 12 months from the completion of treatment and then annually. National Cancer Institute Common Terminology Criteria for Adversemore » Events, version 3.0, was used to grade toxicity. Results: Fifty-two patients were evaluable. Median follow-up was 5.3 years (range, 1.7-6.4 years). Eighty-two percent of patients rated their cosmesis as good/excellent at 1 year, with rates of 64% at 3 years. At 3 years, 31 patients were satisfied with the treatment, 5 were not satisfied but would choose 3D-CRT again, and none would choose standard radiation therapy. The worst adverse event (AE) per patient reported as definitely, probably, or possibly related to radiation therapy was 36.5% grade 1, 50% grade 2, and 5.8% grade 3 events. Grade 3 AEs were all skin or musculoskeletal-related. Treatment-related factors were evaluated to potentially establish an association with observed toxicity. Surgical bed volume, target volume, the number of beams used, and the use of bolus were not associated with late cosmesis. Conclusions: Most patients enrolled in RTOG 0319 were satisfied with their treatment, and all would choose to have the 3D-CRT APBI again.« less