skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Flash microwave synthesis of trevorite nanoparticles

Journal Article · · Journal of Solid State Chemistry
;  [1]
  1. NANOSCIENCES-GERM - Groupe d'Etudes et de Recherches en Microondes, I.C.B. (Institut Carnot de Bourgogne), UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, B.P. 47870, 21078 Dijon Cedex (France)

Nickel ferrite nanoparticles have several possible applications as cathode materials for rechargeable batteries, named 'lithium-ion' batteries. In this study, NiFe{sub 2}O{sub 4} was prepared by microwave induced thermohydrolysis. The obtained nanoparticles were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), BET method, transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). All the results show that the microwave one-step flash synthesis leads in a very short time to NiFe{sub 2}O{sub 4} nanoparticles with elementary particles size close to 4-5 nm, and high specific surfaces (close to 240 m{sup 2}/g). Thus, microwave heating appears as an efficient source of energy to produce quickly nanoparticles with complex composition as ferrite. - Graphical abstract: At the end of the 20th century, a new concept of battery was introduced, named 'Li ion', where electrodes are both lithium-storage materials. Compounds with a spinel structure are so investigated and microwave heating appears as an efficient source of energy to produce nanoparticles in a very short time and at low temperature, with controlled size (4-5 nm) and high specific area (240 m{sup 2}/g). Legend: Pictogram represents our original microwave reactor, the RAMO (French acronym of Reacteur Autoclave Micro-Onde), containing the reactants and submitted to the microwave irradiation. Multicolor candy represents obtained material.

OSTI ID:
21043932
Journal Information:
Journal of Solid State Chemistry, Vol. 181, Issue 3; Other Information: DOI: 10.1016/j.jssc.2008.01.009; PII: S0022-4596(08)00024-8; Copyright (c) 2008 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English