skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparison of Real-Time Intraoperative Ultrasound-Based Dosimetry With Postoperative Computed Tomography-Based Dosimetry for Prostate Brachytherapy

Journal Article · · International Journal of Radiation Oncology, Biology and Physics
 [1];  [1];  [1];  [1];  [2]
  1. Department of Radiation Medicine, Ohio State University, Columbus, OH (United States)
  2. Department of Urologic Surgery, Ohio State University, Columbus, OH (United States)

Purpose: To evaluate whether real-time intraoperative ultrasound (US)-based dosimetry can replace conventional postoperative computed tomography (CT)-based dosimetry in prostate brachytherapy. Methods and Materials: Between December 2001 and November 2002, 82 patients underwent {sup 103}Pd prostate brachytherapy. An interplant treatment planning system was used for real-time intraoperative transrectal US-guided treatment planning. The dose distribution was updated according to the estimated seed position to obtain the dose-volume histograms. Postoperative CT-based dosimetry was performed a few hours later using the Theraplan-Plus treatment planning system. The dosimetric parameters obtained from the two imaging modalities were compared. Results: The results of this study revealed correlations between the US- and CT-based dosimetry. However, large variations were found in the implant-quality parameters of the two modalities, including the doses covering 100%, 90%, and 80% of the prostate volume and prostate volumes covered by 100%, 150%, and 200% of the prescription dose. The mean relative difference was 38% and 16% for doses covering 100% and 90% of the prostate volume and 10% and 21% for prostate volumes covered by 100% and 150% of the prescription dose, respectively. The CT-based volume covered by 200% of the prescription dose was about 30% greater than the US-based one. Compared with CT-based dosimetry, US-based dosimetry significantly underestimated the dose to normal organs, especially for the rectum. The average US-based maximal dose and volume covered by 100% of the prescription dose for the rectum was 72 Gy and 0.01 cm{sup 3}, respectively, much lower than the 159 Gy and 0.65 cm{sup 3} obtained using CT-based dosimetry. Conclusion: Although dosimetry using intraoperative US-based planning provides preliminary real-time information, it does not accurately reflect the postoperative CT-based dosimetry. Until studies have determined whether US-based dosimetry or postoperative CT-based dosimetry can better predict patient outcomes, the American Brachytherapy Society recommendation of CT-based postimplant dosimetry should remain the standard of care.

OSTI ID:
21039734
Journal Information:
International Journal of Radiation Oncology, Biology and Physics, Vol. 70, Issue 1; Other Information: DOI: 10.1016/j.ijrobp.2007.09.008; PII: S0360-3016(07)04208-3; Copyright (c) 2008 Elsevier Science B.V., Amsterdam, Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0360-3016
Country of Publication:
United States
Language:
English