skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Restricted Field IMRT Dramatically Enhances IMRT Planning for Mesothelioma

Journal Article · · International Journal of Radiation Oncology, Biology and Physics
; ; ;  [1]
  1. Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (United States)

Purpose: To improve the target coverage and normal tissue sparing of intensity-modulated radiotherapy (IMRT) for mesothelioma after extrapleural pneumonectomy. Methods and Materials: Thirteen plans from patients previously treated with IMRT for mesothelioma were replanned using a restricted field technique. This technique was novel in two ways. It limited the entrance beams to 200{sup o} around the target and three to four beams per case had their field apertures restricted down to the level of the heart or liver to further limit the contralateral lung dose. New constraints were added that included a mean lung dose of <9.5 Gy and volume receiving {>=}5 Gy of <55%. Results: In all cases, the planning target volume coverage was excellent, with an average of 97% coverage of the planning target volume by the target dose. No change was seen in the target coverage with the new technique. The heart, kidneys, and esophagus were all kept under tolerance in all cases. The average mean lung dose, volume receiving {>=}20 Gy, and volume receiving {>=}5 Gy with the new technique was 6.6 Gy, 3.0%, and 50.8%, respectively, compared with 13.8 Gy, 15%, and 90% with the previous technique (p < 0.0001 for all three comparisons). The maximal value for any case in the cohort was 8.0 Gy, 7.3%, and 57.5% for the mean lung dose, volume receiving {>=}20 Gy, and volume receiving {>=}5 Gy, respectively. Conclusion: Restricted field IMRT provides an improved method to deliver IMRT to a complex target after extrapleural pneumonectomy. An upcoming Phase I trial will provide validation of these results.

OSTI ID:
21039685
Journal Information:
International Journal of Radiation Oncology, Biology and Physics, Vol. 69, Issue 5; Other Information: DOI: 10.1016/j.ijrobp.2007.06.075; PII: S0360-3016(07)03690-5; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0360-3016
Country of Publication:
United States
Language:
English