skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparison of mega-voltage cone-beam computed tomography prostate localization with online ultrasound and fiducial markers methods

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.2830381· OSTI ID:21036156
;  [1]
  1. Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212 (United States) and Drexel University College of Medicine, Allegheny Campus, Pittsburgh, Pennsylvania 15212 (United States)

The online image-guided localization data from 696 ultrasound (United States), 598 mega-voltage cone-beam computed tomography (MV-CBCT), and 393 seed markers (SMs) couch alignments for patients undergoing intensity modulation radiotherapy of the prostate were analyzed. Daily US, MV-CBCT and SM images were acquired for 19, 17 and 12 patients, respectively, after each patient was immobilized in a vacuum cradle and setup to skin markers as the center of mass. The couch shifts applied in the lateral (left-right/LR), vertical (anterior-posterior/AP), and longitudinal (superior-inferior/SI) directions, along with the magnitude of the three-dimensional (3D) shift vector, were analyzed and compared for all three methods. The percentage of shifts larger than 5 mm in all directions was also compared. Clinical target volume-planning target volume (CTV-to-PTV) expansion margins were estimated based on the localization data with US, CB, and SM image guidance. Results show the US data have greater variability. Systematic and random shifts were -1.2{+-}6.8 mm (LR), -2.8{+-}5.1 mm (SI) and -1.0{+-}5.9 mm (AP) for US, 1.0{+-}3.9 mm (LR), -1.3{+-}2.5 mm (SI) and -0.3{+-}3.9 mm (AP) for CB, and -1.0{+-}3.4 mm (LR), 0.0{+-}3.4 mm (SI) and 0.5{+-}4.1 mm (AP) for SM. The mean 3D shift distance was larger using US (8.8{+-}6.2 mm) compared to CB and SM (5.3{+-}3.4 mm and 5.2{+-}3.7 mm, respectively). The percentage of US shifts larger than 5 mm were 34%, 31%, and 38% in the LR, SI, and AP directions, respectively, compared to 18%, 6%, and 16% for CB and 14%, 10%, and 20% for SM. MV-CBCT and SM localization data suggest a different distribution of prostate center-of-mass shifts with smaller variability, compared to US. The online MV-CBCT and SM image-guidance data show that for treatments that do not include daily prostate localization, one can use a CTV-to-PTV margin that is 4 mm smaller than the one suggested by US data, hence allowing more rectum and bladder sparing and potentially improving the therapeutic ratio.

OSTI ID:
21036156
Journal Information:
Medical Physics, Vol. 35, Issue 2; Other Information: DOI: 10.1118/1.2830381; (c) 2008 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English