skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effective Lagrangian approach to fermion electric dipole moments induced by a CP-violating WW{gamma} vertex

Journal Article · · Physical Review. D, Particles Fields
;  [1]
  1. Facultad de Ciencias Fisico Matematicas, Benemerita Universidad Autonoma de Puebla, Apartado Postal 1152, Puebla, Pue. (Mexico)

The one-loop contribution of the two CP-violating components of the WW{gamma} vertex, {kappa}-tilde{sub {gamma}}W{sub {mu}}{sup +}W{sub {nu}}{sup -}F-tilde{sup {mu}}{sup {nu}} and ({lambda}-tilde{sub {gamma}}/m{sub W}{sup 2})W{sub {mu}}{sub {nu}}{sup +}W{sub {rho}}{sup -{nu}}F-tilde{sup {rho}}{sup {mu}}, on the electric dipole moment (EDM) of fermions is calculated using dimensional regularization and its impact at low energies reexamined in the light of the decoupling theorem. The Ward identities satisfied by these couplings are derived by adopting a SU{sub L}(2)xU{sub Y}(1)-invariant approach and their implications in radiative corrections discussed. Previous results on {kappa}-tilde{sub {gamma}}, whose bound is updated to |{kappa}-tilde{sub {gamma}}|<5.2x10{sup -5}, are reproduced, but disagreement with those existing for {lambda}-tilde{sub {gamma}} is found. In particular, the upper bound |{lambda}-tilde{sub {gamma}}|<1.9x10{sup -2} is found from the limit on the neutron EDM, which is more than 2 orders of magnitude less stringent than that of previous results. It is argued that this difference between the {kappa}-tilde{sub {gamma}} and {lambda}-tilde{sub {gamma}} bounds is the one that might be expected in accordance with the decoupling theorem. This argument is reinforced by analyzing carefully the low-energy behavior of the loop functions. The upper bounds on the W EDM, |d{sub W}|<6.2x10{sup -21} e{center_dot}cm, and the magnetic quadrupole moment, |Q-tilde{sub W}|<3x10{sup -36} e{center_dot}cm{sup 2}, are derived. The EDM of the second and third families of quarks and charged leptons are estimated. In particular, EDM as large as 10{sup -20} e{center_dot}cm and 10{sup -21} e{center_dot}cm are found for the t and b quarks, respectively.

OSTI ID:
21035747
Journal Information:
Physical Review. D, Particles Fields, Vol. 77, Issue 1; Other Information: DOI: 10.1103/PhysRevD.77.015011; (c) 2008 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 0556-2821
Country of Publication:
United States
Language:
English