Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Resonant Einstein-de Haas Effect in a Rubidium Condensate

Journal Article · · Physical Review Letters
;  [1];  [2];  [3]
  1. Instytut Fizyki Teoretycznej, Uniwersytet w Bialymstoku, ulica Lipowa 41, 15-424 Bialystok (Poland)
  2. Institut fuer Laser-Physik, Universitaet Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)
  3. Instytut Fizyki PAN, Aleja Lotnikow 32/46, 02-668 Warsaw (Poland)
We theoretically consider a spin polarized, optically trapped condensate of {sup 87}Rb atoms in F=1. We observe a transfer of atoms to other Zeeman states due to the dipolar interaction which couples the spin and the orbital degrees of freedom. Therefore the transferred atoms acquire an orbital angular momentum. This is a realization of the Einstein-de Haas effect in systems of cold gases. We find resonances which make this phenomenon observable even in very weak dipolar systems, when the Zeeman energy difference on transfer is fully converted to rotational kinetic energy.
OSTI ID:
21024189
Journal Information:
Physical Review Letters, Journal Name: Physical Review Letters Journal Issue: 13 Vol. 99; ISSN 0031-9007; ISSN PRLTAO
Country of Publication:
United States
Language:
English

Similar Records

Tunable dipolar resonances and Einstein-de Haas effect in a {sup 87}Rb-atom condensate
Journal Article · Wed Jun 15 00:00:00 EDT 2011 · Physical Review. A · OSTI ID:21550162

Einstein-de Haas Effect in Dipolar Bose-Einstein Condensates
Journal Article · Thu Mar 02 23:00:00 EST 2006 · Physical Review Letters · OSTI ID:20778720

Observing the Einstein-de Haas Effect with Atoms in an Optical Lattice
Journal Article · Fri Oct 12 00:00:00 EDT 2007 · Physical Review Letters · OSTI ID:21024250