skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Master Curve and Conventional Fracture Toughness of Modified 9Cr-1Mo Steel

Conference ·
OSTI ID:21021009
; ; ; ;  [1]
  1. Korea Atomic Energy Research Institute, 150 Dukjin-dong, Yuseong-gu, Daejeon (Korea, Republic of)

Modified 9Cr-1Mo steel is a primary candidate material for reactor pressure vessel of Very High Temperature Gas-Cooled Reactor (VHTR) in Korean Nuclear Hydrogen Development and Demonstration (NHDD) program. In this study, T0 reference temperature, J-R fracture resistance and Charpy impact properties were evaluated for commercial Grade 91 steel as preliminary tests for the selection of the RPV material for VHTR. The fracture toughness of the modified 9Cr-1Mo steel was compared with those of SA508-Gr.3. The objective of this study was to obtain pre-irradiation fracture toughness properties of modified 9Cr-1Mo steel as reference data for the radiation effects investigation. The results are as follows. Charpy impact properties of the modified 9Cr-1Mo steel were similar to those of SA508-Gr.3. T0 reference temperatures were measured as -67.7 deg C and -72.4 deg C from the tests with standard PCVN (pre-cracked Charpy V-notch) and half sized PCVN specimens respectively, which were similar to results for SA508-Gr.3. The K{sub Jc} values of modified 9Cr-1Mo with test temperatures are successfully expressed with the Master Curve. The J-R fracture resistance of modified 9Cr-1Mo steel at room temperature was almost the same as that of SA508-Gr.3. On the other hand it was a little bit higher at an elevated temperature. (authors)

Research Organization:
American Nuclear Society, 555 North Kensington Avenue, La Grange Park, IL 60526 (United States)
OSTI ID:
21021009
Resource Relation:
Conference: 2006 International congress on advances in nuclear power plants - ICAPP'06, Reno - Nevada (United States), 4-8 Jun 2006; Other Information: Country of input: France; 11 refs; Related Information: In: Proceedings of the 2006 international congress on advances in nuclear power plants - ICAPP'06, 2734 pages.
Country of Publication:
United States
Language:
English