Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Ab initio correlated calculations of rare-gas dimer quadrupoles

Journal Article · · Physical Review. A
 [1]
  1. Algodign, LLC, Bolshaya Sadovaya 8, Moscow 123001 (Russian Federation)

This paper reports ab initio calculations of rare gas (RG=Kr, Ar, Ne, and He) dimer quadrupoles at the second order of Moeller-Plesset perturbation theory (MP2). The study reveals the crucial role of the dispersion contribution to the RG{sub 2} quadrupole in the neighborhood of the equilibrium dimer separation. The magnitude of the dispersion quadrupole is found to be much larger than that predicted by the approximate model of Hunt. As a result, the total MP2 quadrupole moment is significantly smaller than was assumed in virtually all previous related studies. An analytical model for the distance dependence of the RG{sub 2} quadrupole is proposed. The model is based on the effective-electron approach of Jansen, but replaces the original Gaussian approximation to the electron density in an RG atom by an exponential one. The role of the nonadditive contribution in RG{sub 3} quadrupoles is discussed.

OSTI ID:
21020733
Journal Information:
Physical Review. A, Journal Name: Physical Review. A Journal Issue: 4 Vol. 76; ISSN 1050-2947; ISSN PLRAAN
Country of Publication:
United States
Language:
English