Braiding transformation, entanglement swapping, and Berry phase in entanglement space
Journal Article
·
· Physical Review. A
- Liuhui Center for Applied Mathematics and Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071 (China)
- Department of Physics, Northeast Normal University, Changchun, Jilin 130024 (China)
We show that braiding transformation is a natural approach to describe quantum entanglement by using the unitary braiding operators to realize entanglement swapping and generate the Greenberger-Horne-Zeilinger states as well as the linear cluster states. A Hamiltonian is constructed from the unitary R{sub i,i+1}({theta},{phi}) matrix, where {phi}={omega}t is time-dependent while {theta} is time-independent. This in turn allows us to investigate the Berry phase in the entanglement space.
- OSTI ID:
- 21020693
- Journal Information:
- Physical Review. A, Journal Name: Physical Review. A Journal Issue: 4 Vol. 76; ISSN 1050-2947; ISSN PLRAAN
- Country of Publication:
- United States
- Language:
- English
Similar Records
Berry phase and entanglement of three qubits in a new Yang-Baxter system
Entanglement swapping of noisy states: A kind of superadditivity in nonclassicality
Three-qubit thermal entanglement via entanglement swapping on two-qubit Heisenberg XY chains
Journal Article
·
Sat Aug 15 00:00:00 EDT 2009
· Journal of Mathematical Physics
·
OSTI ID:21294276
Entanglement swapping of noisy states: A kind of superadditivity in nonclassicality
Journal Article
·
Sat Oct 15 00:00:00 EDT 2005
· Physical Review. A
·
OSTI ID:20718703
Three-qubit thermal entanglement via entanglement swapping on two-qubit Heisenberg XY chains
Journal Article
·
Wed Dec 14 23:00:00 EST 2005
· Physical Review. A
·
OSTI ID:20786265