skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Non-Markovian entanglement dynamics of noisy continuous-variable quantum channels

Journal Article · · Physical Review. A
 [1];  [1]
  1. Department of Physics and Center for Quantum Information Science, National Cheng Kung University, Tainan 70101, Taiwan (China)

We investigate the entanglement dynamics of continuous-variable quantum channels in terms of an entangled squeezed state of two cavity fields in a general non-Markovian environment. Using the Feynman-Vernon influence functional theory in the coherent-state representation, we derive an exact master equation with time-dependent coefficients reflecting the non-Markovian influence of the environment. The influence of environments with different spectral densities, e.g., Ohmic, sub-Ohmic, and super-Ohmic, is numerically studied. The non-Markovian process shows its remarkable influence on the entanglement dynamics due to the sensitive time dependence of the dissipation and noise functions within the typical time scale of the environment. The Ohmic environment shows a weak dissipation-noise effect on the entanglement dynamics, while the sub-Ohmic and super-Ohmic environments induce much more severe noise. In particular, the memory of the system interacting with the environment contributes a strong decoherence effect to the entanglement dynamics in the super-Ohmic case.

OSTI ID:
21020669
Journal Information:
Physical Review. A, Vol. 76, Issue 4; Other Information: DOI: 10.1103/PhysRevA.76.042127; (c) 2007 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 1050-2947
Country of Publication:
United States
Language:
English

Similar Records

Fermionic-mode entanglement in non-Markovian environment
Journal Article · Sun Mar 15 00:00:00 EDT 2015 · Annals of Physics · OSTI ID:21020669

Non-Markovian decoherence theory for a double-dot charge qubit
Journal Article · Mon Dec 15 00:00:00 EST 2008 · Physical Review. B, Condensed Matter and Materials Physics · OSTI ID:21020669

Exact decoherence dynamics of a single-mode optical field
Journal Article · Sat Aug 15 00:00:00 EDT 2009 · Annals of Physics (New York) · OSTI ID:21020669