skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Moessbauer spectra as a 'fingerprint' in tin-lithium compounds: Applications to Li-ion batteries

Abstract

Several Li-Sn crystalline phases, i.e. Li{sub 2}Sn{sub 5}, LiSn, Li{sub 7}Sn{sub 3}, Li{sub 5}Sn{sub 2}, Li{sub 13}Sn{sub 5}, Li{sub 7}Sn{sub 2} and Li{sub 22}Sn{sub 5} were prepared by ball-milling and characterized by X-ray powder diffraction and {sup 119}Sn Moessbauer spectroscopy. The analysis of the Moessbauer hyperfine parameters, i.e. isomer shift ({delta}) and quadrupole splitting ({delta}), made it possible to define two types of Li-Sn compounds: the Sn-richest compounds (Li{sub 2}Sn{sub 5}, LiSn) and the Li-richest compounds (Li{sub 7}Sn{sub 3}, Li{sub 5}Sn{sub 2}, Li{sub 13}Sn{sub 5}, Li{sub 7}Sn{sub 2}, Li{sub 22}Sn{sub 5}). The isomer shift values ranged from 2.56 to 2.38 mm s{sup -1} for Li{sub 2}Sn{sub 5}, LiSn and from 2.07 to 1.83 mm s{sup -1} for Li{sub 7}Sn{sub 3}, Li{sub 5}Sn{sub 2}, Li{sub 13}Sn{sub 5}, Li{sub 7}Sn{sub 2} and Li{sub 22}Sn{sub 5}, respectively. A {delta}-{delta} correlation diagram is introduced in order to identify the different phases observed during the electrochemical process of new Sn-based materials. This approach is illustrated by the identification of the phases obtained at the end of the first discharge of {eta}-Cu{sub 6}Sn{sub 5} and SnB{sub 0.6}P{sub 0.4}O{sub 2.9}. - Graphical abstract: {delta}-{delta} correlation diagram for the different tin sites of the Li-Sn compounds. The symbolsmore » denote the different Li-Sn phases and the products obtained at the end of the discharge of {eta}-Cu{sub 6}Sn{sub 5} and SnB{sub 0.6}P{sub 0.4}O{sub 2.9}. The grey and the light-grey areas show Sn-centred polyhedra without and with one Sn first-nearest neighbours, respectively.« less

Authors:
 [1];  [2];  [2];  [2];  [3];  [3];  [3]
  1. Laboratoire des Agregats Moleculaires et Materiaux Inorganiques (UMR 5072 CNRS), CC15, Universite Montpellier II, Place Eugene Bataillon, 34095 Montpellier Cedex 5 (France), E-mail: frobert@univ-montp2.fr
  2. Laboratoire des Agregats Moleculaires et Materiaux Inorganiques (UMR 5072 CNRS), CC15, Universite Montpellier II, Place Eugene Bataillon, 34095 Montpellier Cedex 5 (France)
  3. Laboratoire de Reactivite et Chimie des Solides (UMR 6007 CNRS), Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France)
Publication Date:
OSTI Identifier:
21015656
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 180; Journal Issue: 1; Other Information: DOI: 10.1016/j.jssc.2006.10.026; PII: S0022-4596(06)00566-4; Copyright (c) 2006 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; DIAGRAMS; ELECTROCHEMISTRY; ISOMER SHIFT; LITHIUM ALLOYS; LITHIUM COMPOUNDS; LITHIUM IONS; MOESSBAUER EFFECT; TIN ALLOYS; TIN COMPOUNDS; X-RAY DIFFRACTION

Citation Formats

Robert, F., Lippens, P.E., Olivier-Fourcade, J., Jumas, J.-C., Gillot, F., Morcrette, M., and Tarascon, J.-M.. Moessbauer spectra as a 'fingerprint' in tin-lithium compounds: Applications to Li-ion batteries. United States: N. p., 2007. Web. doi:10.1016/j.jssc.2006.10.026.
Robert, F., Lippens, P.E., Olivier-Fourcade, J., Jumas, J.-C., Gillot, F., Morcrette, M., & Tarascon, J.-M.. Moessbauer spectra as a 'fingerprint' in tin-lithium compounds: Applications to Li-ion batteries. United States. doi:10.1016/j.jssc.2006.10.026.
Robert, F., Lippens, P.E., Olivier-Fourcade, J., Jumas, J.-C., Gillot, F., Morcrette, M., and Tarascon, J.-M.. Mon . "Moessbauer spectra as a 'fingerprint' in tin-lithium compounds: Applications to Li-ion batteries". United States. doi:10.1016/j.jssc.2006.10.026.
@article{osti_21015656,
title = {Moessbauer spectra as a 'fingerprint' in tin-lithium compounds: Applications to Li-ion batteries},
author = {Robert, F. and Lippens, P.E. and Olivier-Fourcade, J. and Jumas, J.-C. and Gillot, F. and Morcrette, M. and Tarascon, J.-M.},
abstractNote = {Several Li-Sn crystalline phases, i.e. Li{sub 2}Sn{sub 5}, LiSn, Li{sub 7}Sn{sub 3}, Li{sub 5}Sn{sub 2}, Li{sub 13}Sn{sub 5}, Li{sub 7}Sn{sub 2} and Li{sub 22}Sn{sub 5} were prepared by ball-milling and characterized by X-ray powder diffraction and {sup 119}Sn Moessbauer spectroscopy. The analysis of the Moessbauer hyperfine parameters, i.e. isomer shift ({delta}) and quadrupole splitting ({delta}), made it possible to define two types of Li-Sn compounds: the Sn-richest compounds (Li{sub 2}Sn{sub 5}, LiSn) and the Li-richest compounds (Li{sub 7}Sn{sub 3}, Li{sub 5}Sn{sub 2}, Li{sub 13}Sn{sub 5}, Li{sub 7}Sn{sub 2}, Li{sub 22}Sn{sub 5}). The isomer shift values ranged from 2.56 to 2.38 mm s{sup -1} for Li{sub 2}Sn{sub 5}, LiSn and from 2.07 to 1.83 mm s{sup -1} for Li{sub 7}Sn{sub 3}, Li{sub 5}Sn{sub 2}, Li{sub 13}Sn{sub 5}, Li{sub 7}Sn{sub 2} and Li{sub 22}Sn{sub 5}, respectively. A {delta}-{delta} correlation diagram is introduced in order to identify the different phases observed during the electrochemical process of new Sn-based materials. This approach is illustrated by the identification of the phases obtained at the end of the first discharge of {eta}-Cu{sub 6}Sn{sub 5} and SnB{sub 0.6}P{sub 0.4}O{sub 2.9}. - Graphical abstract: {delta}-{delta} correlation diagram for the different tin sites of the Li-Sn compounds. The symbols denote the different Li-Sn phases and the products obtained at the end of the discharge of {eta}-Cu{sub 6}Sn{sub 5} and SnB{sub 0.6}P{sub 0.4}O{sub 2.9}. The grey and the light-grey areas show Sn-centred polyhedra without and with one Sn first-nearest neighbours, respectively.},
doi = {10.1016/j.jssc.2006.10.026},
journal = {Journal of Solid State Chemistry},
number = 1,
volume = 180,
place = {United States},
year = {Mon Jan 15 00:00:00 EST 2007},
month = {Mon Jan 15 00:00:00 EST 2007}
}