Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

The decomposition of the spinor bundle of Grassmann manifolds

Journal Article · · Journal of Mathematical Physics
DOI:https://doi.org/10.1063/1.2804760· OSTI ID:21013789
 [1]
  1. Department of Mathematics, University of Dortmund, 44221 Dortmund (Germany)
The decomposition of the spinor bundle of the spin Grassmann manifolds G{sub m,n}=SO(m+n)/SO(m)xSO(n) into irreducible representations of so(m)+so(n) is presented. A universal construction is developed and the general statement is proven for G{sub 2k+1,3}, G{sub 2k,4}, and G{sub 2k+1,5} for all k. The decomposition is used to discuss properties of the spectrum and the eigenspaces of the Dirac operator.
OSTI ID:
21013789
Journal Information:
Journal of Mathematical Physics, Journal Name: Journal of Mathematical Physics Journal Issue: 11 Vol. 48; ISSN JMAPAQ; ISSN 0022-2488
Country of Publication:
United States
Language:
English

Similar Records

Nuclear structure on a Grassmann manifold
Journal Article · Thu Oct 01 00:00:00 EDT 1987 · Found. Phys.; (United States) · OSTI ID:5827492

On pseudo-Riemannian manifolds with many Killing spinors
Journal Article · Sun Feb 01 23:00:00 EST 2009 · AIP Conference Proceedings · OSTI ID:21260245

Fuzzy geometry via the spinor bundle, with applications to holographic space-time and matrix theory
Journal Article · Sat Oct 15 00:00:00 EDT 2011 · Physical Review. D, Particles Fields · OSTI ID:21611517