Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Optimal numerical parameterization of discontinuous Galerkin method applied to wave propagation problems

Journal Article · · Journal of Computational Physics
 [1];  [2];  [3];  [3];  [4]
  1. Universite catholique de Louvain, Department of Civil Engineering, Place du Levant 1, 1348 Louvain-la-Neuve (Belgium)
  2. CENAERO CFD and Multiphysics Group, Batiment Mermoz 1, Av. J. Mermoz 30, b: 6041 Gosselies (Belgium)
  3. Free Field Technologies SA, Place de l'Universite, 1348 Louvain-la-Neuve (Belgium)
  4. Universite catholique de Louvain, Department of Civil Engineering, Place du Levant 1, 1348 Louvain-la-Neuve (Belgium) and Center for Systems Engineering and Applied Mechanics (CESAME), Universite catholique de Louvain, 1348 Louvain-la-Neuve (Belgium)
This paper deals with the high-order discontinuous Galerkin (DG) method for solving wave propagation problems. First, we develop a one-dimensional DG scheme and numerically compute dissipation and dispersion errors for various polynomial orders. An optimal combination of time stepping scheme together with the high-order DG spatial scheme is presented. It is shown that using a time stepping scheme with the same formal accuracy as the DG scheme is too expensive for the range of wave numbers that is relevant for practical applications. An efficient implementation of a high-order DG method in three dimensions is presented. Using 1D convergence results, we further show how to adequately choose elementary polynomial orders in order to equi-distribute a priori the discretization error. We also show a straightforward manner to allow variable polynomial orders in a DG scheme. We finally propose some numerical examples in the field of aero-acoustics.
OSTI ID:
20991571
Journal Information:
Journal of Computational Physics, Journal Name: Journal of Computational Physics Journal Issue: 1 Vol. 223; ISSN JCTPAH; ISSN 0021-9991
Country of Publication:
United States
Language:
English

Similar Records

Discontinuous Galerkin method based on non-polynomial approximation spaces
Journal Article · Tue Oct 10 00:00:00 EDT 2006 · Journal of Computational Physics · OSTI ID:20840356

A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media
Journal Article · Thu Dec 09 23:00:00 EST 2010 · Journal of Computational Physics · OSTI ID:21418123

A high-order discontinuous Galerkin method for wave propagation through coupled elastic–acoustic media
Journal Article · Tue Nov 30 23:00:00 EST 2010 · Journal of Computational Physics · OSTI ID:1564731