skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Disruption of the intracellular Ca{sup 2+} homeostasis in the cardiac excitation-contraction coupling is a crucial mechanism of arrhythmic toxicity in aconitine-induced cardiomyocytes

Journal Article · · Biochemical and Biophysical Research Communications
OSTI ID:20979843
 [1];  [1];  [2];  [2];  [1]
  1. School of Medicine, Tsinghua University, Beijing 100084 (China)
  2. Beijing University of Chinese Medicine, Beijing 100029 (China)

Aconitine is an effective ingredient in Aconite tuber, an important traditional Chinese medicine. Aconitine is also known to be a highly toxic diterpenoid alkaloid with arrhythmogenic effects. In the present study, we have characterized the properties of arrhythmic cytotoxicity and explored the possible mechanisms of aconitine-induced cardiomyocytes. Results show that aconitine induces significant abnormity in the spontaneous beating rate, amplitude of spontaneous oscillations and the relative intracellular Ca{sup 2+} concentration. Also, mRNA transcription levels and protein expressions of SR Ca{sup 2+} release channel RyR{sub 2} and sarcolemmal NCX were elevated in aconitine-induced cardiomyocytes. However, co-treatment with ruthenium red (RR), a RyR channel inhibitor, could reverse the aconitine-induced abnormity in intracellular Ca{sup 2+} signals. These results demonstrate that disruption of intracellular Ca{sup 2+} homeostasis in the cardiac excitation-contraction coupling (EC coupling) is a crucial mechanism of arrhythmic cytotoxicity in aconitine-induced cardiomyocytes. Moreover, certain inhibitors appear to play an important role in the detoxification of aconitine-induced Ca{sup 2+}-dependent arrhythmias.

OSTI ID:
20979843
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 354, Issue 4; Other Information: DOI: 10.1016/j.bbrc.2007.01.082; PII: S0006-291X(07)00113-1; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English