skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multiple reflections and diffuse scattering in Bragg scattering at optical lattices

Journal Article · · Physical Review. A
; ; ; ;  [1]
  1. Physikalisches Institut, Eberhard-Karls-Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076, Tuebingen (Germany)

We study Bragg scattering at one-dimensional atomic lattices. Cold atoms are confined by optical dipole forces at the antinodes of a standing wave generated inside a laser-driven cavity. The atoms arrange themselves into an array of lens-shaped layers located at the antinodes of the standing wave. Light incident on this array at a well-defined angle is partially Bragg reflected. We measure reflectivities as high as 30%. In contrast to a previous experiment devoted to the thin grating limit [S. Slama et al., Phys. Rev. Lett. 94, 193901 (2005)] we now investigate the thick grating limit characterized by multiple reflections of the light beam between the atomic layers. In principle, multiple reflections give rise to a photonic stop band, which manifests itself in the Bragg diffraction spectra as asymmetries and minima due to destructive interference between different reflection paths. We show that close to resonance however disorder favors diffuse scattering, hinders coherent multiple scattering and impedes the characteristic suppression of spontaneous emission inside a photonic band gap.

OSTI ID:
20979299
Journal Information:
Physical Review. A, Vol. 73, Issue 2; Other Information: DOI: 10.1103/PhysRevA.73.023424; (c) 2006 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 1050-2947
Country of Publication:
United States
Language:
English