skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Scaling of cell size in cellular instabilities of nonpremixed jet flames

Journal Article · · Combustion and Flame
;  [1]
  1. Ecole Polytechnique Federale de Lausanne, Laboratory of Fluid Mechanics, CH-1015 Lausanne (Switzerland)

Systematic experiments have been undertaken to study the parameter dependence of cellular instability and in particular the scaling of the resulting cell size in CO{sub 2}-diluted H{sub 2}-O{sub 2} jet diffusion flames. Cellular flames are known to arise near the extinction limit when reactant Lewis numbers are relatively low. The Lewis numbers of the investigated near-extinction mixtures, based on the initial mixture strength {phi}{sub m} and ambient conditions, varied in the ranges [1.1-1.3] for oxygen and [0.25-0.29] for hydrogen ({phi}{sub m} is defined here as the fuel-to-oxygen mass ratio, normalized by the stoichiometric ratio). The experiments were carried out both in an axisymmetric jet (AJ) burner and in a two-dimensional slot burner known as a Wolfhard-Parker (WP) burner with an oxidizer co-flow (mostly 100% O{sub 2}) of fixed low velocity. First, the region of cellular flames adjacent to the extinction limit was characterized in terms of initial H{sub 2} concentration and fuel jet velocity, with all other parameters fixed. Then, the wavelength of the cellular instability, i.e., the cell size, was determined as a function of the fuel jet velocity and the initial mixture strength {phi}{sub m}. For conditions not too close to extinction, this wavelength is found to increase with the square root of the vorticity thickness of the jet shear layer and roughly the 1/5 power of {phi}{sub m}. Very close to extinction, this scaling breaks down and will likely switch to a scaling with the flame thickness, i.e., involving the Damkoehler number. (author)

OSTI ID:
20961973
Journal Information:
Combustion and Flame, Vol. 151, Issue 1-2; Other Information: Elsevier Ltd. All rights reserved; ISSN 0010-2180
Country of Publication:
United States
Language:
English