skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pseudacteon decapitating flies: Potential vectors of a fire ant virus?

Abstract

Solenopsis invicta virus (SINV-1) is a positive-stranded RNA virus recently found to infect all stages of the red imported fire ant, Solenopsis invicta (Valles et al. 2004; Valles and Strong 2005). SINV-1 and a second genotype have been tentatively assigned to the Dicistroviridae (Mayo 2002). Infected individuals or colonies did not exhibit any immediate, discernible symptoms in the field. However, under stress from introduction into the laboratory, brood death was often observed among infected colonies, ultimately leading to the death of the entire colony (Valles et al. 2004). These characteristics are consistent with other insect-infecting positive-stranded RNA viruses. They often persist as inapparent, asymptomatic infections that, under certain conditions, induce replication within the host, resulting in observable symptoms and often death (Christian and Scotti 1998; Fernandez et al. 2002). The SINV infection rate among colonies was reported to be around 25% in Gainesville, Florida (Valles et al. 2004; Valles and Strong 2005). SINV vertical and horizontal transmission were inferred based on RT-PCR detection of virus genome in eggs and successful colony to colony transfer under lab conditions (Valles et al. 2004). However, the exact mechanisms by which the virus is spread from nest to nest in the field are unknown.more » Our results indicate that SINV does not replicate within Pseudacteon decapitating flies that parasitize S. invicta. Flies appeared to develop normally from SINV-infected S. invicta workers. Mechanical transmission of SINV to uninfected ants by oviposition appears unlikely.« less

Authors:
;  [1]
  1. Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, Florida 32608 (United States)
Publication Date:
OSTI Identifier:
20942939
Resource Type:
Journal Article
Resource Relation:
Journal Name: Florida Entomologist; Journal Volume: 90; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); DOI: 10.1653/0015-4040(2007)90[268:PDFPVO]2.0.CO;2; Refs, 2 tabs
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ANTS; DISEASE VECTORS; EGGS; FLIES; GENOTYPE; MECHANICAL TRANSMISSIONS; NESTS; PEST CONTROL; POLYMERASE CHAIN REACTION; RNA; VIRAL DISEASES; VIRUSES

Citation Formats

Valles, S.M., and Porter, S.D.. Pseudacteon decapitating flies: Potential vectors of a fire ant virus?. United States: N. p., 2007. Web. doi:10.1653/0015-4040(2007)90[268:PDFPVO]2.0.CO;2; REFS, 2 TABS.
Valles, S.M., & Porter, S.D.. Pseudacteon decapitating flies: Potential vectors of a fire ant virus?. United States. doi:10.1653/0015-4040(2007)90[268:PDFPVO]2.0.CO;2; REFS, 2 TABS.
Valles, S.M., and Porter, S.D.. Thu . "Pseudacteon decapitating flies: Potential vectors of a fire ant virus?". United States. doi:10.1653/0015-4040(2007)90[268:PDFPVO]2.0.CO;2; REFS, 2 TABS.
@article{osti_20942939,
title = {Pseudacteon decapitating flies: Potential vectors of a fire ant virus?},
author = {Valles, S.M. and Porter, S.D.},
abstractNote = {Solenopsis invicta virus (SINV-1) is a positive-stranded RNA virus recently found to infect all stages of the red imported fire ant, Solenopsis invicta (Valles et al. 2004; Valles and Strong 2005). SINV-1 and a second genotype have been tentatively assigned to the Dicistroviridae (Mayo 2002). Infected individuals or colonies did not exhibit any immediate, discernible symptoms in the field. However, under stress from introduction into the laboratory, brood death was often observed among infected colonies, ultimately leading to the death of the entire colony (Valles et al. 2004). These characteristics are consistent with other insect-infecting positive-stranded RNA viruses. They often persist as inapparent, asymptomatic infections that, under certain conditions, induce replication within the host, resulting in observable symptoms and often death (Christian and Scotti 1998; Fernandez et al. 2002). The SINV infection rate among colonies was reported to be around 25% in Gainesville, Florida (Valles et al. 2004; Valles and Strong 2005). SINV vertical and horizontal transmission were inferred based on RT-PCR detection of virus genome in eggs and successful colony to colony transfer under lab conditions (Valles et al. 2004). However, the exact mechanisms by which the virus is spread from nest to nest in the field are unknown. Our results indicate that SINV does not replicate within Pseudacteon decapitating flies that parasitize S. invicta. Flies appeared to develop normally from SINV-infected S. invicta workers. Mechanical transmission of SINV to uninfected ants by oviposition appears unlikely.},
doi = {10.1653/0015-4040(2007)90[268:PDFPVO]2.0.CO;2; REFS, 2 TABS},
journal = {Florida Entomologist},
number = 1,
volume = 90,
place = {United States},
year = {Thu Mar 15 00:00:00 EDT 2007},
month = {Thu Mar 15 00:00:00 EDT 2007}
}
  • We report the discovery of a new virus from the red imported fire ant, Solenopsis invicta. Solenopsis invicta virus 3 (SINV-3) represents the third virus discovered from this ant species using the metagenomics approach. The single (positive)-strand RNA, monopartite, bicistronic genome of SINV-3 was sequenced in entirety (GenBank accession number (FJ528584)), comprised of 10,386 nucleotides, and polyadenylated at the 3' terminus. This genome size was confirmed by Northern analysis. The genome revealed 2 large open reading frames (ORFs) in the sense orientation with an untranslated region (UTR) at each end and between the two ORFs. The 5' proximal ORF (ORFmore » 1) encoded a predicted protein of 299.1 kDa (2580 amino acids). The 3' proximal ORF (ORF 2) encoded a predicted protein of 73.2 kDa (651 amino acids). RNA-dependent RNA polymerase (RdRp), helicase, and protease domains were recognized in ORF 1. SDS-PAGE separation of purified SINV-3 particles yielded 2 bands (ostensibly capsid proteins) with a combined molecular mass of 77.3 kDa which was similar to the mass predicted by ORF 2 (73.2 kDa). Phylogenetic analysis of the conserved amino acid sequences containing domains I to VIII of the RdRp from dicistroviruses, iflaviruses, plant small RNA viruses, picornaviruses, and 4 unassigned positive-strand RNA viruses revealed a trichotomous phenogram with SINV-3 and Kelp fly virus comprising a unique cluster. Electron microscopic examination of negatively stained samples of SINV-3 revealed isometric particles with apparent projections and a diameter of 27.3 +- 1.3 nm. SINV-3 was successfully transmitted to uninfected workers by feeding. The minus (replicative) strand of SINV-3 was detected in worker ants indicating replication of the virus. The possibility of using SINV-3 as a microbial control agent for fire ants is discussed.« less
  • The authors have previously described a defective herpes simplex virus (HSV-1) vector system that permits that introduction of virtually any gene into nonmitotic cells. pHSVlac, the prototype vector, stably expresses Escherichia coli {beta}-galactosidase from a constitutive promoter in many human cell lines, in cultured rat neurons from throughout the nervous system, and in cells in the adult rat brain. HSV-1 vectors expressing other genes may prove useful for studying neuronal physiology or performing human gene therapy for neurological diseases, such as Parkinson disease or brain tumors. A HSV-1 temperature-sensitive (ts) mutant, ts K, has been used as helper virus; tsmore » mutants revert to wild type. In contrast, HSV-1 deletion mutants essentially cannot revert to wild type; therefore, use of a deletion mutant as helper virus might permit human gene therapy with HSV-1 vectors. They now report an efficient packaging system for HSV-1 VECTORS USING A DELETION MUTANT, d30EBA, as helper virus; virus is grown on the complementing cell line M64A. pHSVlac virus prepared using the deletion mutant packaging system stably expresses {beta}-galactosidase in cultured rat sympathetic neurons and glia. Both D30EBA and ts K contain a mutation in the IE3 gene of HSV-1 strain 17 and have the same phenotype; therefore, changing the helper virus from ts K to D30EBA does not alter the host range or other properties of the HSV-1 vector system.« less
  • Retroviruses are valuable tools in studies of embryonic development, both as gene expression vectors and as cell lineage markers. In this study early chicken blastoderm cells are shown to be permissive for infection by Rous sarcoma virus and derivative replication-defective by Rous sarcoma virus and derivative replication-defective vectors, and, in contrast to previously published data, these cells will readily express viral genes. In cultured blastoderm cells, Rous sarcoma virus stably integrates and is transcribed efficiently, producing infectious virus particles. Using replication-defective vectors encoding the bacterial lacZ gene, the authors further show that blastoderms can be infected in culture and inmore » ovo. In ovo, lacZ expression is seen within 24 hours of virus inoculation, and by 96 hours stably expressing clones of cells are observed in diverse tissues throughout the embryo, including epidermis, somites, and heart, as well as in extraembryonic membranes. Given the rapid onset of vector expression and the broad range of permissive cell types, it should be feasible to use Rous sarcoma virus-derived retroviruses as early lineage markers and expression vectors beginning at the blastoderm stage of avian embryogenesis.« less
  • The immunogenicity and protective capacity of replication-defective herpes simplex virus (HSV) vector-based vaccines were examined in rhesus macaques. Three macaques were inoculated with recombinant HSV vectors expressing Gag, Env, and a Tat-Rev-Nef fusion protein of simian immunodeficiency virus (SIV). Three other macaques were primed with recombinant DNA vectors expressing Gag, Env, and a Pol-Tat-Nef-Vif fusion protein prior to boosting with the HSV vectors. Robust anti-Gag and anti-Env cellular responses were detected in all six macaques. Following intravenous challenge with wild-type, cloned SIV239, peak and 12-week plasma viremia levels were significantly lower in vaccinated compared to control macaques. Plasma SIV RNAmore » in vaccinated macaques was inversely correlated with anti-Rev ELISPOT responses on the day of challenge (P value < 0.05), anti-Tat ELISPOT responses at 2 weeks post challenge (P value < 0.05) and peak neutralizing antibody titers pre-challenge (P value 0.06). These findings support continued study of recombinant herpesviruses as a vaccine approach for AIDS.« less
  • We report the discovery of Nylanderia fulva virus 1 (NfV-1), the first virus identified and characterized from the ant, Nylanderia fulva. The NfV-1 genome (GenBank accession KX024775) is 10,881 nucleotides in length, encoding one large open reading frame (ORF). Helicase, protease, RNA-dependent RNA polymerase, and jelly-roll capsid protein domains were recognized within the polyprotein. Phylogenetic analysis placed NfV-1 in an unclassified clade of viruses. Electron microscopic examination of negatively stained samples revealed particles with icosahedral symmetry with a diameter of 28.7±1.1 nm. The virus was detected by RT-PCR in larval, pupal, worker and queen developmental stages. However, the replicative strandmore » of NfV-1 was only detected in larvae. Vertical transmission did not appear to occur, but horizontal transmission was facile. The inter-colonial field prevalence of NfV-1 was 52±35% with some local infections reaching 100%. NfV-1 was not detected in limited samples of other Nylanderia species or closely related ant species. - Highlights: • A new positive-strand RNA virus was discovered in the ant, Nylanderia fulva. • The Nylanderia fulva virus 1 genome was comprised of 10,881 nucleotides. • NfV-1 was detected in larval, pupal, queen and worker ants, but not eggs. • Replication of NfV-1 appeared to be limited to the larval stage.« less