Quantum integrable systems, non-skew-symmetric r-matrices and algebraic Bethe ansatz
Journal Article
·
· Journal of Mathematical Physics
- Bogoliubov Institute for Theoretical Physics, Institute of Mathematics of NASU, Metrologichna Strasse, 14-b, Kiev 03143 (Ukraine)
We prove the integrability of the general quantum Hamiltonian systems governed by an arbitrary non-skew-symmetric, so(3)-valued, nondynamical classical r-matrix with spectral parameters. We consider the most interesting example of these quantum integrable systems, namely, the so(3) 'generalized Gaudin systems' in detail. In the case of an arbitrary r-matrix which is 'diagonal' in the sl(2) basis we calculate the spectrum and the eigenvalues of the corresponding Hamiltonians using the algebraic Bethe ansatz technique.
- OSTI ID:
- 20929643
- Journal Information:
- Journal of Mathematical Physics, Journal Name: Journal of Mathematical Physics Journal Issue: 2 Vol. 48; ISSN JMAPAQ; ISSN 0022-2488
- Country of Publication:
- United States
- Language:
- English
Similar Records
Non-skew-symmetric classical r-matrices, algebraic Bethe ansatz, and Bardeen-Cooper-Schrieffer-type integrable systems
Generalized Gaudin spin chains, nonskew symmetric r-matrices, and reflection equation algebras
Bethe ansatz and classical Hirota equation
Journal Article
·
Sun Mar 15 00:00:00 EDT 2009
· Journal of Mathematical Physics
·
OSTI ID:21176074
Generalized Gaudin spin chains, nonskew symmetric r-matrices, and reflection equation algebras
Journal Article
·
Wed Nov 14 23:00:00 EST 2007
· Journal of Mathematical Physics
·
OSTI ID:21013793
Bethe ansatz and classical Hirota equation
Journal Article
·
Sun Jan 19 23:00:00 EST 1997
· International Journal of Modern Physics B
·
OSTI ID:462619