Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Quantum integrable systems, non-skew-symmetric r-matrices and algebraic Bethe ansatz

Journal Article · · Journal of Mathematical Physics
DOI:https://doi.org/10.1063/1.2435085· OSTI ID:20929643
 [1]
  1. Bogoliubov Institute for Theoretical Physics, Institute of Mathematics of NASU, Metrologichna Strasse, 14-b, Kiev 03143 (Ukraine)
We prove the integrability of the general quantum Hamiltonian systems governed by an arbitrary non-skew-symmetric, so(3)-valued, nondynamical classical r-matrix with spectral parameters. We consider the most interesting example of these quantum integrable systems, namely, the so(3) 'generalized Gaudin systems' in detail. In the case of an arbitrary r-matrix which is 'diagonal' in the sl(2) basis we calculate the spectrum and the eigenvalues of the corresponding Hamiltonians using the algebraic Bethe ansatz technique.
OSTI ID:
20929643
Journal Information:
Journal of Mathematical Physics, Journal Name: Journal of Mathematical Physics Journal Issue: 2 Vol. 48; ISSN JMAPAQ; ISSN 0022-2488
Country of Publication:
United States
Language:
English

Similar Records

Non-skew-symmetric classical r-matrices, algebraic Bethe ansatz, and Bardeen-Cooper-Schrieffer-type integrable systems
Journal Article · Sun Mar 15 00:00:00 EDT 2009 · Journal of Mathematical Physics · OSTI ID:21176074

Generalized Gaudin spin chains, nonskew symmetric r-matrices, and reflection equation algebras
Journal Article · Wed Nov 14 23:00:00 EST 2007 · Journal of Mathematical Physics · OSTI ID:21013793

Bethe ansatz and classical Hirota equation
Journal Article · Sun Jan 19 23:00:00 EST 1997 · International Journal of Modern Physics B · OSTI ID:462619