skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Circular orbits and spin in black-hole initial data

Journal Article · · Physical Review. D, Particles Fields
; ; ;  [1]
  1. Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109 (United States)

The construction of initial data for black-hole binaries usually involves the choice of free parameters that define the spins of the black holes and essentially the eccentricity of the orbit. Such parameters must be chosen carefully to yield initial data with the desired physical properties. In this paper, we examine these choices in detail for the quasiequilibrium method coupled to apparent-horizon/quasiequilibrium boundary conditions. First, we compare two independent criteria for choosing the orbital frequency, the 'Komar-mass condition' and the 'effective-potential method', and find excellent agreement. Second, we implement quasilocal measures of the spin of the individual holes, calibrate these with corotating binaries, and revisit the construction of nonspinning black-hole binaries. Higher-order effects, beyond those considered in earlier work, turn out to be important. Without those, supposedly nonspinning black holes have appreciable quasilocal spin; furthermore, the Komar-mass condition and effective-potential method agree only when these higher-order effects are taken into account. We compute a new sequence of quasicircular orbits for nonspinning black-hole binaries, and determine the innermost stable circular orbit of this sequence.

OSTI ID:
20871213
Journal Information:
Physical Review. D, Particles Fields, Vol. 74, Issue 6; Other Information: DOI: 10.1103/PhysRevD.74.064011; (c) 2006 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 0556-2821
Country of Publication:
United States
Language:
English

Similar Records

Relativistic black hole-neutron star binaries in quasiequilibrium: Effects of the black hole excision boundary condition
Journal Article · Fri Feb 15 00:00:00 EST 2008 · Physical Review. D, Particles Fields · OSTI ID:20871213

Measuring eccentricity in binary black-hole initial data
Journal Article · Fri Feb 15 00:00:00 EST 2008 · Physical Review. D, Particles Fields · OSTI ID:20871213

Eccentric binary black-hole mergers: The transition from inspiral to plunge in general relativity
Journal Article · Mon Sep 15 00:00:00 EDT 2008 · Physical Review. D, Particles Fields · OSTI ID:20871213