skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Adaptive brachytherapy treatment planning for cervical cancer using FDG-PET

Abstract

Purpose: A dosimetric study was conducted to compare intracavitary brachytherapy using both a conventional and a custom loading intended to cover a positron emission tomography (PET)-defined tumor volume in patients with cervix cancer. Methods and Materials: Eleven patients who underwent an [{sup 18}F]-fluoro-deoxy-D-glucose (FDG)-PET in conjunction with their first, middle, or last brachytherapy treatment were included in this prospective study. A standard plan that delivers 6.5 Gy to point A under ideal conditions was compared with an optimized plan designed to conform the 6.5-Gy isodose surface to the PET defined volume. Results: A total of 31 intracavitary brachytherapy treatments in conjunction with an FDG-PET were performed. The percent coverage of the target isodose surface for the first implant with and without optimization was 73% and 68% (p = 0.21). The percent coverage of the target isodose surface for the mid/final implant was 83% and 70% (p = 0.02), respectively. The dose to point A was higher with the optimized plans for both the first implant (p = 0.02) and the mid/last implants (p = 0.008). The dose to 2 cm{sup 3} and 5 cm{sup 3} of both the bladder and rectum were not significantly different. Conclusions: FDG-PET based treatment planningmore » allowed for improved dose coverage of the tumor without significantly increasing the dose to the bladder and rectum.« less

Authors:
 [1];  [1];  [1];  [2];  [1];  [1];  [3];  [4];  [3];  [5]
  1. Radiation Oncology Department, Mallinckrodt Institute of Radiology, St. Louis, MO (United States)
  2. Division of Radiological Sciences, Mallinckrodt Institute of Radiology, St. Louis, MO (United States)
  3. (United States)
  4. Division of Nuclear Medicine, Mallinckrodt Institute of RadiologySt. Louis, MO (United States)
  5. Radiation Oncology Department, Mallinckrodt Institute of Radiology, St. Louis, MO (United States) and Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO (United States) and Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO (United States). E-mail: pgrigsby@wustl.edu
Publication Date:
OSTI Identifier:
20850299
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 67; Journal Issue: 1; Other Information: DOI: 10.1016/j.ijrobp.2006.08.017; PII: S0360-3016(06)02733-7; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; BLADDER; BRACHYTHERAPY; CARCINOMAS; FLUORINE 18; GLUCOSE; OPTIMIZATION; PATIENTS; PLANNING; POSITRON COMPUTED TOMOGRAPHY; RADIATION DOSES; RADIATION SOURCE IMPLANTS; RECTUM

Citation Formats

Lin, Lilie L., Mutic, Sasa, Low, Daniel A., La Forest, Richard, Vicic, Milos, Zoberi, Imran, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, Miller, Tom R., Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, and Grigsby, Perry W. Adaptive brachytherapy treatment planning for cervical cancer using FDG-PET. United States: N. p., 2007. Web. doi:10.1016/j.ijrobp.2006.08.017.
Lin, Lilie L., Mutic, Sasa, Low, Daniel A., La Forest, Richard, Vicic, Milos, Zoberi, Imran, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, Miller, Tom R., Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, & Grigsby, Perry W. Adaptive brachytherapy treatment planning for cervical cancer using FDG-PET. United States. doi:10.1016/j.ijrobp.2006.08.017.
Lin, Lilie L., Mutic, Sasa, Low, Daniel A., La Forest, Richard, Vicic, Milos, Zoberi, Imran, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, Miller, Tom R., Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, and Grigsby, Perry W. Mon . "Adaptive brachytherapy treatment planning for cervical cancer using FDG-PET". United States. doi:10.1016/j.ijrobp.2006.08.017.
@article{osti_20850299,
title = {Adaptive brachytherapy treatment planning for cervical cancer using FDG-PET},
author = {Lin, Lilie L. and Mutic, Sasa and Low, Daniel A. and La Forest, Richard and Vicic, Milos and Zoberi, Imran and Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO and Miller, Tom R. and Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO and Grigsby, Perry W.},
abstractNote = {Purpose: A dosimetric study was conducted to compare intracavitary brachytherapy using both a conventional and a custom loading intended to cover a positron emission tomography (PET)-defined tumor volume in patients with cervix cancer. Methods and Materials: Eleven patients who underwent an [{sup 18}F]-fluoro-deoxy-D-glucose (FDG)-PET in conjunction with their first, middle, or last brachytherapy treatment were included in this prospective study. A standard plan that delivers 6.5 Gy to point A under ideal conditions was compared with an optimized plan designed to conform the 6.5-Gy isodose surface to the PET defined volume. Results: A total of 31 intracavitary brachytherapy treatments in conjunction with an FDG-PET were performed. The percent coverage of the target isodose surface for the first implant with and without optimization was 73% and 68% (p = 0.21). The percent coverage of the target isodose surface for the mid/final implant was 83% and 70% (p = 0.02), respectively. The dose to point A was higher with the optimized plans for both the first implant (p = 0.02) and the mid/last implants (p = 0.008). The dose to 2 cm{sup 3} and 5 cm{sup 3} of both the bladder and rectum were not significantly different. Conclusions: FDG-PET based treatment planning allowed for improved dose coverage of the tumor without significantly increasing the dose to the bladder and rectum.},
doi = {10.1016/j.ijrobp.2006.08.017},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 1,
volume = 67,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}
  • Purpose: Radiomics have shown potential for predicting treatment outcomes in several body sites. This study investigated the correlation between PET Radiomics features and treatment response of cervical cancer outcomes. Methods: our dataset consisted of a cohort of 79 patients diagnosed with cervical cancer, FIGO stage IB-IVA, age range 25–86 years, (median age at diagnosis: 50 years) all treated between: 2009–14 with external beam radiation therapy to a dose range between: 45–50.4 Gy (median= 45 Gy), concurrent cisplatin chemotherapy and MRI-based brachytherapy to a dose of 20–30 Gy (median= 28 Gy). Metabolic Tumor Volume (MTV) in patient’s primary site was delineatedmore » on pretreatment PET/CT by two board certified Radiation Oncologists. The features extracted from each patient’s volume were: 26 Co-occurrence matrix (COM) Feature, 11 Run-Length Matrix (RLM), 11 Gray Level Size Zone Matrix (GLSZM) and 33 Intensity-based features (IBF). The treatment outcome was divided based on the last follow up status into three classes: No Evidence of Disease (NED), Alive with Disease (AWD) and Dead of Disease (DOD). The ability for the radiomics features to differentiate between the 3 treatments outcome categories were assessed by One-Way ANOVA test with p-value < 0.05 was to be statistically significant. The results from the analysis were compared with the ones obtained previously for standard Uptake Value (SUV). Results: Based on patients last clinical follow-up; 52 showed NED, 17 AWD and 10 DOD. Radiomics Features were able to classify the patients based on their treatment response. A parallel analysis was done for SUV measurements for comparison. Conclusion: Radiomics features were able to differentiate between the three different classes of treatment outcomes. However, most of the features were only able to differentiate between NED and DOD class. Also, The ability or radiomics features to differentiate types of response were more significant than SUV.« less
  • Purpose: Accurate delineation of target volumes is important to maximize radiation dose to the tumor and minimize it to nontumor tissue. Computed tomography (CT) and magnetic resonance imaging (MRI) are standard imaging modalities in rectal cancer. The aim was to explore whether functional imaging with F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET), combined with CT (FDG-PET/CT) gives additional information to standard pretreatment evaluation and changes the shape and size of the gross tumor volume (GTV). Methods and Materials: From 2007 to 2009, 77 consecutive patients with locally advanced rectal cancer were prospectively screened for inclusion in the study at twomore » university hospitals in Sweden, and 68 patients were eligible. Standard GTV was delineated using information from clinical examination, CT, and MRI (GTV-MRI). Thereafter, a GTV-PET was defined in the fused PET-CT, and the target volume delineations were compared for total volume, overlap, and mismatch. Pathologic uptake suspect of metastases was also registered. Results: The median volume of GTV-MRI was larger than that of GTV-PET: 111 cm{sup 3} vs. 87 cm{sup 3} (p < 0.001). In many cases, the GTV-MRI contained the GTV defined on the PET/CT images as subvolumes, but when a GTV total was calculated after the addition of GTV-PET to GTV-MRI, the volume increased, with median 11% (range, 0.5-72%). New lesions were seen in 15% of the patients for whom PET/CT was used. Conclusions: FDG-PET/CT facilitates and adds important information to the standard delineation procedure of locally advanced rectal cancer, mostly resulting in a smaller GTV, but a larger total GTV using the union of GTV-MRI and GTV-PET. New lesions were sometimes seen, potentially changing the treatment strategy.« less
  • Purpose: To evaluate the utility of sequential {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging for brachytherapy treatment planning in patients with carcinoma of the cervix. Methods and Materials: Twenty-four patients with carcinoma of the cervix were included in this prospective study. The clinical stage of their disease was Ib (7), IIa (1), IIb (7), and IIIb (9). Patients were treated with irradiation and brachytherapy, with the majority receiving concurrent weekly cisplatin chemotherapy. Patients underwent diagnostic FDG-PET imaging before treatment, sequential FDG-PET brachytherapy imaging during treatment, and diagnostic FDG-PET 3 months after treatment completion. Delineation of the gross tumor volume, bladder,more » and rectum was performed for all scans using a commercially available treatment-planning system. Actual treatment delivery was based on two-dimensional orthogonal planning. Results: The mean gross tumor volume and percent coverage by the target isodose surface for the initial, mid, and last implant were 37 cm{sup 3}, 17 cm{sup 3}, and 10 cm{sup 3} and 68%, 76%, and 79%, respectively. Nine of 11 patients were found to have continued decrease in tumor volume as measured by FDG-PET, with 3 patients having complete regression of their tumor before treatment was completed. The maximal bladder and rectal doses obtained from three-dimensional dose-volume histograms were significantly higher than the International Commission on Radiation Units and Measurements Report 38 bladder and rectal points obtained by two-dimensional treatment-planning. Conclusions: Sequential FDG-PET brachytherapy imaging identifies the tumor response in individual patients, potentially making patient-specific brachytherapy treatment planning possible.« less
  • The purpose of this study was to analyze the dosimetric outcome of 3D image-guided high-dose-rate (HDR) brachytherapy planning for cervical cancer treatment and compare dose coverage of high-risk clinical target volume (HRCTV) to traditional Point A dose. Thirty-two patients with stage IA2-IIIB cervical cancer were treated using computed tomography/magnetic resonance imaging-based image-guided HDR brachytherapy (IGBT). Brachytherapy dose prescription was 5.0-6.0 Gy per fraction for a total 5 fractions. The HRCTV and organs at risk (OARs) were delineated following the GYN GEC/ESTRO guidelines. Total doses for HRCTV, OARs, Point A, and Point T from external beam radiotherapy and brachytherapy were summatedmore » and normalized to a biologically equivalent dose of 2 Gy per fraction (EQD2). The total planned D90 for HRCTV was 80-85 Gy, whereas the dose to 2 mL of bladder, rectum, and sigmoid was limited to 85 Gy, 75 Gy, and 75 Gy, respectively. The mean D90 and its standard deviation for HRCTV was 83.2 {+-} 4.3 Gy. This is significantly higher (p < 0.0001) than the mean value of the dose to Point A (78.6 {+-} 4.4 Gy). The dose levels of the OARs were within acceptable limits for most patients. The mean dose to 2 mL of bladder was 78.0 {+-} 6.2 Gy, whereas the mean dose to rectum and sigmoid were 57.2 {+-} 4.4 Gy and 66.9 {+-} 6.1 Gy, respectively. Image-based 3D brachytherapy provides adequate dose coverage to HRCTV, with acceptable dose to OARs in most patients. Dose to Point A was found to be significantly lower than the D90 for HRCTV calculated using the image-based technique. Paradigm shift from 2D point dose dosimetry to IGBT in HDR cervical cancer treatment needs advanced concept of evaluation in dosimetry with clinical outcome data about whether this approach improves local control and/or decreases toxicities.« less
  • Purpose: To evaluate adaptive daily planning for cervical cancer patients who underwent high-dose-rate intra-cavitary brachytherapy (HDR-ICBT). Methods: This study included 22 cervical cancer patients who underwent 5 fractions of HDR ICBT. Regions of interest (ROIs) including high-risk clinical tumor volume (HR-CTV) and organs-at-risk (OARs) were manually contoured on daily CT images. All patients were treated with adaptive daily plans, which involved ROI delineation and dose optimization at each treatment fraction. Single treatment plans were retrospectively generated by applying the first treatment fraction’s dwell times adjusted for decay and dwell positions of the applicator to subsequent treatment fractions. Various existing similaritymore » metrics were calculated for the ROIs to quantify interfractional organ variations. A novel similarity score (JRARM) was established, which combined both volumetric overlap metrics (DSC, JSC, and RVD) and distance metrics (ASD, MSD, and RMSD). Linear regression was performed to determine a relationship between inter-fractional organ variations of various similarity metrics and D2cc variations from both plans. Wilcoxon Signed Rank Tests were used to assess adaptive daily plans and single plans by comparing EQD2 D2cc (α/β=3) for OARs. Results: For inter-fractional organ variations, the sigmoid demonstrated the greatest variations based on the JRARM and DSC similarity metrics. Comparisons between paired ROIs showed differences in JRARM scores and DSCs at each treatment fraction. RVD, MSD, and RMSD were found to be significantly correlated to D2cc variations for bladder and sigmoid. The comparison between plans found that adaptive daily planning provided lower EQD2 D2cc of OARs than single planning, specifically for the sigmoid (p=0.015). Conclusion: Substantial inter-fractional organ motion can occur during HDR-BT, which may significantly affect D2cc of OARs. Adaptive daily planning provides improved dose sparing for OARs compared to single planning.« less