skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Experimental Investigation of a Shock-Accelerated Liquid Layer with Imaging and Pressure Measurement

Journal Article · · Fusion Science and Technology
OSTI ID:20849538
; ; ;  [1]
  1. University of Wisconsin - Madison (United States)

Many inertial fusion energy reactor designs incorporate the use of liquid wall protection of cooling tubes to mitigate damage due to energetic particles and to absorb target debris. However, the pressure loading of the reactor first wall from the impulsive loading from the shock-accelerated liquid layer may be a concern. A vertical shock tube is used to conduct shock-accelerated liquid layer experiments to simulate this scenario. A shock wave contacts and accelerates a water layer down the shock tube where it is imaged in the test section. The pressure histories at various positions along the length of the shock tube are digitally recorded as well as the shadowgraph image of the breakup of the water layer. It is found that the speed of the transmitted shock wave is reduced after passing through the liquid layer, however, the pressure load at the end-wall of the shock tube is significantly increased due to the present of the liquid layer. Water layers of two different thicknesses are studied at several Mach numbers ranging from 1.34 to 3.20.

OSTI ID:
20849538
Journal Information:
Fusion Science and Technology, Vol. 44, Issue 2; Other Information: Copyright (c) 2006 American Nuclear Society (ANS), United States, All rights reserved. http://epubs.ans.org/; Country of input: International Atomic Energy Agency (IAEA); ISSN 1536-1055
Country of Publication:
United States
Language:
English