skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Role of microbial iron reduction in the dissolution of iron hydroxysulfate minerals - article no. G01012

Abstract

Reduction of structural sulfate in the iron-hydroxysulfate mineral jarosite by sulfate-reducing bacteria has previously been demonstrated. The primary objective of this work was to evaluate the potential for anaerobic dissolution of the iron-hydroxysulfate minerals jarosite and schwertmannite at neutral pH by iron-reducing bacteria. Mineral dissolution was tested using a long-term cultivar, Geobacter metallireducens strain GS-15, and a fresh isolate Geobacter sp. strain ENN1, previously undescribed. ENN1 was isolated from the discharge site of Shadle Mine, in the southern anthracite coalfield of Pennsylvania, where schwertmannite was the predominant iron-hydroxysulfate mineral. When jarosite from Elizabeth Mine (Vermont) was provided as the sole terminal electron acceptor, resting cells of both G. metallireducens and ENN1 were able to reduce structural Fe(III), releasing Fe{sup +2}, SO{sub 4}{sup -2}, and K{sup +} ions. A lithified jarosite sample from Utah was more resistant to microbial attack, but slow release of Fe{sup +2} was observed. Neither bacterium released Fe{sup +2} from poorly crystalline synthetic schwertmannite. Our results indicate that exposure of jarosite to iron-reducing conditions at neutral pH is likely to promote the mobility of hazardous constituents and should therefore be considered in evaluating waste disposal and/or reclamation options involving jarosite-bearing materials.

Authors:
; ; ;  [1]
  1. US Geological Survey, Reston, VA (United States)
Publication Date:
OSTI Identifier:
20813285
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Geophysical Research; Journal Volume: 111; Journal Issue: G1
Country of Publication:
United States
Language:
English
Subject:
01 COAL, LIGNITE, AND PEAT; REDUCTION; IRON SULFATES; MINERALS; PH VALUE; ANAEROBIC CONDITIONS; DISSOLUTION; BACTERIA; PENNSYLVANIA; USA; UTAH

Citation Formats

Jones, E.J.P., Nadeau, T.L., Voytek, M.A., and Landa, E.R. Role of microbial iron reduction in the dissolution of iron hydroxysulfate minerals - article no. G01012. United States: N. p., 2006. Web.
Jones, E.J.P., Nadeau, T.L., Voytek, M.A., & Landa, E.R. Role of microbial iron reduction in the dissolution of iron hydroxysulfate minerals - article no. G01012. United States.
Jones, E.J.P., Nadeau, T.L., Voytek, M.A., and Landa, E.R. Tue . "Role of microbial iron reduction in the dissolution of iron hydroxysulfate minerals - article no. G01012". United States. doi:.
@article{osti_20813285,
title = {Role of microbial iron reduction in the dissolution of iron hydroxysulfate minerals - article no. G01012},
author = {Jones, E.J.P. and Nadeau, T.L. and Voytek, M.A. and Landa, E.R.},
abstractNote = {Reduction of structural sulfate in the iron-hydroxysulfate mineral jarosite by sulfate-reducing bacteria has previously been demonstrated. The primary objective of this work was to evaluate the potential for anaerobic dissolution of the iron-hydroxysulfate minerals jarosite and schwertmannite at neutral pH by iron-reducing bacteria. Mineral dissolution was tested using a long-term cultivar, Geobacter metallireducens strain GS-15, and a fresh isolate Geobacter sp. strain ENN1, previously undescribed. ENN1 was isolated from the discharge site of Shadle Mine, in the southern anthracite coalfield of Pennsylvania, where schwertmannite was the predominant iron-hydroxysulfate mineral. When jarosite from Elizabeth Mine (Vermont) was provided as the sole terminal electron acceptor, resting cells of both G. metallireducens and ENN1 were able to reduce structural Fe(III), releasing Fe{sup +2}, SO{sub 4}{sup -2}, and K{sup +} ions. A lithified jarosite sample from Utah was more resistant to microbial attack, but slow release of Fe{sup +2} was observed. Neither bacterium released Fe{sup +2} from poorly crystalline synthetic schwertmannite. Our results indicate that exposure of jarosite to iron-reducing conditions at neutral pH is likely to promote the mobility of hazardous constituents and should therefore be considered in evaluating waste disposal and/or reclamation options involving jarosite-bearing materials.},
doi = {},
journal = {Journal of Geophysical Research},
number = G1,
volume = 111,
place = {United States},
year = {Tue Mar 28 00:00:00 EST 2006},
month = {Tue Mar 28 00:00:00 EST 2006}
}
  • Mercury (Hg) is a toxic heavy metal that poses significant environmental and human health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (β-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus disregarded as a potential source of Hg back to aqueous or gaseous pools. In this study, we conducted a combination of field and laboratory incubations to identify the potential for metacinnabar as a source of dissolved Hg within near neutral pH environments and the underpinning (a)biotic mechanismsmore » at play. We show that the abundant and widespread sulfur-oxidizing bacteria of the genus Thiobacillus extensively colonized metacinnabar chips incubated within aerobic, near neutral pH creek sediments. Laboratory incubations of axenic Thiobacillus thioparus cultures led to the release of metacinnabar-hosted Hg(II) and subsequent volatilization to Hg(0). This dissolution and volatilization was greatly enhanced in the presence of thiosulfate, which served a dual role by enhancing HgS dissolution through Hg complexation and providing an additional metabolic substrate for Thiobacillus. These findings reveal a new coupled abiotic-biotic pathway for the transformation of metacinnabar-bound Hg(II) to Hg(0), while expanding the sulfide substrates available for neutrophilic chemosynthetic bacteria to Hg-laden sulfides. Lastly, they also point to mineral-hosted Hg as an underappreciated source of gaseous elemental Hg to the environment.« less
  • There is a growing need for a better understanding of the biogeochemical dynamics involved in microbial U(VI) reduction due to an increasing interest in using biostimulation via electron donor addition as a means to remediate uranium contaminated sites. U(VI) reduction has been observed to be maximized during iron reducing conditions and to decrease upon commencement of sulfate reducing conditions. There are many unknowns regarding the impact of iron/sulfate biogeochemistry on U(VI) reduction. This includes Fe(III) availability as well as the microbial community changes, including the activity of iron-reducers during the uranium biostimulation period even after the onset of sulfate reduction.more » Up-flow column experiments were conducted with Old Rifle site sediments containing Fe-oxides, Fe-clays, and sulfate rich groundwater. Half of the columns had sediment that was augmented with small amounts of small-particle 57Fe-goethite to track continuously minute goethite changes, and to study the effects of increased Fe(III) levels on the overall biostimulation dynamics. The addition of the 57Fe-goethite did not delay the onset of sulfate reduction, but slightly suppressed the overall rate of sulfate reduction and hence acetate utilization, it did not affect the bacterial numbers of Geobacter-like species throughout the experiment, but did lower the numbers of sulfate reducers in the sediments. 57Fe-Mössbauer analyses (a 57Fe-specific technique) confirmed that there was bioavailable iron present after the onset of sulfate reduction and that iron was still being reduced during sulfate reduction. Addition of the 57Fe-goethite to the sediment had a noticeable effect on the overall composition of the microbial population. 16S rRNA analyses of biostimulated sediment using TRFLP (terminal restriction fragment length polymorphism) showed that Geobacter sp. (a known Fe-reducer) was still active and replicating during the period of significant sulfate reduction. DNA fingerprints of the sediment-attached microbial communities were dominated by 5 TRFs, that comprised 25-57% of the total profile.« less
  • Microbial reduction of Fe(III) in clay minerals is an important process that affects properties of clay-rich materials and iron biogeochemical cycling in natural environments. Microbial reduction often ceases before all Fe(III) in clay minerals is exhausted. The factors causing the cessation are, however, not well understood. The objective of this study was to assess the role of biogenic Fe(II) in microbial reduction of Fe(III) in various clay minerals. Bioreduction experiments were performed in a batch system, where lactate was used as the sole electron donor, Fe(III) in clay minerals as the sole electron acceptor, and Shewanella putrefaciens CN32 as themore » mediator with and without an electron shuttle AQDS. Our results showed that bioreduction activity ceased within two weeks with variable extents of bioreduction of structural Fe(III) in clay minerals. When fresh CN32 cells were added to the old cultures (6 months), bioreduction resumed and extents increased. This result indicated that the previous cessation of Fe(III) bioreduction was not necessarily due to the exhaustion of bioavailable Fe(III) in the mineral structure, and suggested that the changes of cell physiology or solution chemistry, such as Fe(II) production during microbial reduction, affected the extent of bioreduction. To investigate the effect of Fe(II) production on Fe(III) bioreduction, a typical bioreduction process (consisting of lactate, clay, cells and AQDS) was separated into two steps: 1. AQDS was reduced by cells in the absence of clay but in the presence of variable Fe(II) concentrations; 2. reduction of Fe(III) in clays by biogenic AH2DS in the absence of cells. The inhibitory effect of Fe(II) on CN32 activity was confirmed. TEM analysis revealed a thick electron dense halo surrounding the cell surfaces that most likely resulted from Fe(II) sorption/precipitation. Such electron dense materials might have blocked or interfered electron transfers on cell surfaces. The inhibitory effect of Fe(II) was also observed in AH2DS reduction of clay Fe(III). The reduction extent consistently decreased with an increasing concentration of presorbed Fe(II) (onto clay surfaces) at the start of reduction experiments. The relative reduction extent (i.e., reduction extent after normalization to the reduction extent when spiked Fe(II) was zero) was similar for all clay minerals studied and showed a systematic decrease with increasing clay-sorbed Fe(II) concentration. These results suggest a similar inhibitory effect of clay-sorbed Fe(II) on the reduction extent for different clay minerals. An equilibrium thermodynamic model was established with independently estimated parameters to evaluate whether the cessation of Fe(III) reduction by AH2DS was due to the exhaustion of reaction free energy. Model-calculated reduction extents were, however, over 50% higher than experimentally measured, indicating that other factors, such as blockage of the electron transfer chain and mineralogy, restricted the reduction extent. This study also revealed that the relative reducibility of Fe(III) in different clay was as follows: nontronite > chlorite > illite. This order is qualitatively consistent with the differences in crystal chemistry of these minerals.« less
  • Iron- reducing and oxidizing microorganisms gain energy through reduction or oxidation of iron, and by doing so they play an important role in geochemical cycling of iron in a wide range of environments. This study was undertaken to investigate iron redox cycling in the deep subsurface by taking an advantage of the Chinese Continental Scientific Deep Drilling project. A fluid sample from 2450 m was collected and Fe(III)-reducing microorganisms were enriched using specific media (pH 6.2). Nontronite, an Fe(III)-rich clay mineral, was used in initial enrichments with lactate and acetate as electron donors under strictly anaerobic condition at the in-situmore » temperature of the fluid sample (65oC). Instead of a monotonic increase in Fe(II) concentration with time as would have been expected if Fe(III) bioreduction was the sole process, Fe(II) concentration initially increased, reached a peak, but then decreased to a minimum level. Continued incubation revealed an iron cycling with a cycling period of five to ten days. These initial results suggested that there might be Fe(III) reducers and Fe(II) oxidizers in the enrichment culture. Subsequently, multiple transfers were made with an attempt to isolate individual Fe(III) reducers and Fe(II) oxidizers. However, iron cycling persisted after multiple transfers. Additional experiments were conducted to ensure that iron reduction and oxidation was indeed biological. Biological Fe(II) oxidation was further confirmed in a series of roll tubes (with a pH gradient) where FeS and siderite were used as the sole electron donor. The oxidation of FeS occurred only at pH 10, and goethite, lepidocrocite, and ferrihydrite formed as oxidation products. Although molecular evidence (16S rRNA gene analysis) collectively suggested that only a single organism (a strain of Thermoanaerobacter ethanolicus) might be responsible for both Fe(III) reduction and Fe(II) oxidation, we could not rule out the possibility that Fe(III) reduction and Fe(II) oxidation may be accomplished by a consortia of organisms. Nonetheless, our data were definitive in showing that iron redox cycling exists in the deep subsurface.« less