Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Convergence Analysis of the Nonlinear Coarse-Mesh Finite Difference Method for One-Dimensional Fixed-Source Neutron Diffusion Problem

Journal Article · · Nuclear Science and Engineering
DOI:https://doi.org/10.13182/NSE03-64· OSTI ID:20804934
 [1];  [1];  [2]
  1. Purdue University (United States)
  2. Korea Atomic Energy Research Institute (Korea, Republic of)
The convergence rates of the nonlinear coarse-mesh finite difference (CMFD) method and the coarse-mesh rebalance (CMR) method are derived analytically for one-dimensional, one-group solutions of the fixed-source diffusion problem in a nonmultiplying infinite homogeneous medium. The derivation was performed by linearizing the nonlinear algorithm and by applying Fourier error analysis to the linearized algorithm. The mesh size measured in units of the diffusion length is shown to be a dominant parameter for the convergence rate and for the stability of the iterative algorithms. For a small mesh size problem, the nonlinear CMFD is shown to be a more effective acceleration method than CMR. Both CMR and two-node CMFD algorithms are shown to be unconditionally stable. However, the one-node CMFD becomes unstable for large mesh sizes. To remedy this instability, an underrelaxation of the current correction factor for the one-node CMFD method is successfully introduced, and the domain of stability is significantly expanded. Furthermore, the optimum underrelaxation parameter is analytically derived, and the one-node CMFD with the optimum relaxation is shown to be unconditionally stable.
OSTI ID:
20804934
Journal Information:
Nuclear Science and Engineering, Journal Name: Nuclear Science and Engineering Journal Issue: 2 Vol. 147; ISSN NSENAO; ISSN 0029-5639
Country of Publication:
United States
Language:
English

Similar Records

Convergence analysis of two-node CMFD method for two-group neutron diffusion eigenvalue problem
Journal Article · Mon Nov 30 23:00:00 EST 2015 · Journal of Computational Physics · OSTI ID:22570198

Generalized Coarse-Mesh Rebalance Method for Acceleration of Neutron Transport Calculations
Journal Article · Mon Nov 14 23:00:00 EST 2005 · Nuclear Science and Engineering · OSTI ID:20808479

Coarse-Mesh Angular Dependent Rebalance Acceleration of the Discrete Ordinates Transport Calculations
Journal Article · Sun Nov 14 23:00:00 EST 2004 · Nuclear Science and Engineering · OSTI ID:20808396