A Finite Subelement Generalization of the Variational Nodal Method
Journal Article
·
· Nuclear Science and Engineering
- University of Missouri- Rolla (United States)
- University of Missouri-Rolla (United States)
- Northwestern University (United States)
- Argonne National Laboratory (United States)
The variational nodal method is generalized by dividing each spatial node into a number of triangular finite elements designated as subelements. The finite subelement trial functions allow for explicit geometry representations within each node, thus eliminating the need for nodal homogenization. The method is implemented within the Argonne National Laboratory code VARIANT and applied to two-dimensional multigroup problems.Eigenvalue and pin-power results are presented for a four-assembly Organization for Economic Cooperation and Development/Nuclear Energy Agency benchmark problem containing enriched UO{sub 2} and mixed oxide fuel pins. Our seven-group model combines spherical or simplified spherical harmonic approximations in angle with isoparametric linear or quadratic subelement basis functions, thus eliminating the need for fuel-coolant homogenization. Comparisons with reference seven-group Monte Carlo solutions indicate that in the absence of pin-cell homogenization, high-order angular approximations are required to obtain accurate eigenvalues, while the results are substantially less sensitive to the refinement of the finite subelement grids.
- OSTI ID:
- 20804852
- Journal Information:
- Nuclear Science and Engineering, Journal Name: Nuclear Science and Engineering Journal Issue: 1 Vol. 144; ISSN NSENAO; ISSN 0029-5639
- Country of Publication:
- United States
- Language:
- English
Similar Records
Reactor whole core transport calculations without fuel assembly homogenization
Whole-core comparisons of subelement and fine-mesh variational nodal methods
Space-angle approximations in the variational nodal method.
Technical Report
·
Fri Oct 18 00:00:00 EDT 2002
·
OSTI ID:804739
Whole-core comparisons of subelement and fine-mesh variational nodal methods
Journal Article
·
Wed Sep 01 00:00:00 EDT 1999
· Transactions of the American Nuclear Society
·
OSTI ID:678129
Space-angle approximations in the variational nodal method.
Conference
·
Thu Mar 11 23:00:00 EST 1999
·
OSTI ID:12384