skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermally induced rotons in two-dimensional dilute Bose gases

Abstract

We show that rotonlike excitations are thermally induced in a two-dimensional dilute Bose gas as a consequence of the strong phase fluctuations in two dimensions. At low momentum, the rotonlike excitations lead for small enough temperatures to an anomalous phonon spectrum with a temperature-dependent exponent reminiscent of the Kosterlitz-Thouless transition. Despite the anomalous form of the energy spectrum, it is shown that the corresponding effective theory of vortices describes the usual Kosterlitz-Thouless transition. The possible existence of an anomalous normal state in a small temperature interval is also discussed.

Authors:
;  [1]
  1. Institut fuer Theoretische Physik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin (Germany)
Publication Date:
OSTI Identifier:
20787996
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review. B, Condensed Matter and Materials Physics; Journal Volume: 73; Journal Issue: 10; Other Information: DOI: 10.1103/PhysRevB.73.104515; (c) 2006 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BOSE-EINSTEIN GAS; BOSONS; ENERGY SPECTRA; EXCITATION; FLUCTUATIONS; PHONONS; ROTONS; TEMPERATURE DEPENDENCE; TWO-DIMENSIONAL CALCULATIONS; VORTICES

Citation Formats

Nogueira, Flavio S., and Kleinert, Hagen. Thermally induced rotons in two-dimensional dilute Bose gases. United States: N. p., 2006. Web. doi:10.1103/PHYSREVB.73.1.
Nogueira, Flavio S., & Kleinert, Hagen. Thermally induced rotons in two-dimensional dilute Bose gases. United States. doi:10.1103/PHYSREVB.73.1.
Nogueira, Flavio S., and Kleinert, Hagen. Wed . "Thermally induced rotons in two-dimensional dilute Bose gases". United States. doi:10.1103/PHYSREVB.73.1.
@article{osti_20787996,
title = {Thermally induced rotons in two-dimensional dilute Bose gases},
author = {Nogueira, Flavio S. and Kleinert, Hagen},
abstractNote = {We show that rotonlike excitations are thermally induced in a two-dimensional dilute Bose gas as a consequence of the strong phase fluctuations in two dimensions. At low momentum, the rotonlike excitations lead for small enough temperatures to an anomalous phonon spectrum with a temperature-dependent exponent reminiscent of the Kosterlitz-Thouless transition. Despite the anomalous form of the energy spectrum, it is shown that the corresponding effective theory of vortices describes the usual Kosterlitz-Thouless transition. The possible existence of an anomalous normal state in a small temperature interval is also discussed.},
doi = {10.1103/PHYSREVB.73.1},
journal = {Physical Review. B, Condensed Matter and Materials Physics},
number = 10,
volume = 73,
place = {United States},
year = {Wed Mar 01 00:00:00 EST 2006},
month = {Wed Mar 01 00:00:00 EST 2006}
}
  • I show that in low dimensions the interactions in dilute Bose mixtures are strongly renormalized, which leads to a considerable change of stability conditions compared to the mean-field results valid in the high-density regime. Estimates are given for the two-component Bose-Hubbard model and for the {sup 87}Rb-{sup 41}K mixture.
  • In three dimensions, noninteracting bosons undergo Bose-Einstein condensation at a critical temperature, T{sub c}, which is slightly shifted by {Delta}T{sub c}, if the particles interact. We calculate the excitation spectrum of interacting Bose systems, {sup 4}He and {sup 87}Rb, and show that a roton minimum emerges in the spectrum above a threshold value of the gas parameter. We provide a general theoretical argument for why the roton minimum and the maximal upward critical temperature shift are related. We also suggest two experimental avenues to observe rotons in condensates. These results, based upon a path-integral Monte Carlo approach, provide a microscopicmore » explanation of the shift in the critical temperature and also show that a roton minimum does emerge in the excitation spectrum of particles with a structureless, short-range, two-body interaction.« less
  • We use the renormalization-group method to study the magnetic field influence on the Bose-Einstein condensation of interacting dilute magnons in three-dimensional spin systems. We first considered a model with SU(2) symmetry (universality class z=1) and we obtain for the critical magnetic field a power law dependence on the critical temperature, [H{sub c}(T)-H{sub c}(0)]{approx}T{sup 2}. In the case of U(1) symmetry (universality class z=2) the dependence is different, and the magnetic critical field depends linearly on the critical temperature, [H{sub c}(T)-H{sub c}(0)]{approx}T. By considering a more relevant model, which includes also the system's anisotropy, we obtain for the same symmetry classmore » a T{sup 3/2} dependence of the magnetic critical field on the critical temperature. We discuss these theoretical predictions of the renormalization group in connection with experimental results reported in the literature.« less
  • We investigate the ground-state properties of two-component Bose gases confined in one-dimensional harmonic traps in the scheme of density-functional theory. The density-functional calculations employ a Bethe-ansatz-based local-density approximation for the correlation energy, which accounts for the correlation effect properly from the weakly interacting regime to the strongly interacting regime. For the binary Bose mixture with spin-independent interaction, the homogeneous reference system is exactly solvable by the Bethe-ansatz method. Within the local-density approximation, we determine the density distribution of each component and study its evolution from Bose distributions to Fermi-like distribution with the increase in interaction. For the binary mixture ofmore » Tonks-Girardeau gases with a tunable interspecies repulsion, with a generalized Bose-Fermi transformation we show that the Bose mixture can be mapped into a two-component Fermi gas, which corresponds to exact soluble Yang-Gaudin model for the homogeneous system. Based on the ground-state energy function of the Yang-Gaudin model, the ground-state density distributions are calculated for various interspecies interactions. It is shown that with the increase in interspecies interaction, the system exhibits composite-fermionization crossover.« less
  • Recent experiments on ultracold Bose gases in two dimensions have provided evidence for the existence of the Berezinskii-Kosterlitz-Thouless (BKT) phase via analysis of the interference between two independent systems. In this work we study the two-dimensional quantum degenerate Bose gas at finite temperature using the projected Gross-Pitaevskii equation classical field method. Although this describes the highly occupied modes of the gas below a momentum cutoff, we have developed a method to incorporate the higher momentum states in our model. We concentrate on finite-sized homogeneous systems in order to simplify the analysis of the vortex pairing. We determine the dependence ofmore » the condensate fraction on temperature and compare this to the calculated superfluid fraction. By measuring the first order correlation function we determine the boundary of the Bose-Einstein condensate and BKT phases, and find it is consistent with the superfluid fraction decreasing to zero. We reveal the characteristic unbinding of vortex pairs above the BKT transition via a coarse-graining procedure. Finally, we model the procedure used in experiments to infer system correlations [Hadzibabic et al., Nature 441, 1118 (2006)], and quantify its level of agreement with directly calculated in situ correlation functions.« less