skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Far-infrared Rydberg-Rydberg transitions in a magnetic field: Deexcitation of antihydrogen atoms

Journal Article · · Physical Review. A
DOI:https://doi.org/10.1103/PHYSREVA.73.0· OSTI ID:20787490
; ; ;  [1]
  1. FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam (Netherlands)

The dynamics of (de)excitation between highly excited Rydberg states (15<n<60 of Rb) in a magnetic field of 0.85 {+-}0.05 T is studied with far-infrared pulses (90-110 and 50 {mu}m) originating from a free electron laser. We measured the excitation spectrum to states around n=40 from a deeper bound state near n=25. Moreover, starting from a highly excited state (30<n<60) below and in the n-mixing regime we investigated the efficiency of the deexcitation channel vs the ionization channel. We measured deexcitation efficiencies well above 50% for some of the states. However, starting deep in the n-mixing regime the deexcitation efficiency is less than 10%. The measurements were in good agreement with fully quantum mechanical calculations. Calculations for deexcitation of n=35 states in H found the largest amount of deexcitation for m=0 and almost none for m=20. In recent experiments at CERN, antihydrogen is produced in high n states in a strong magnetic field with a wide distribution of m. Our measurements and calculations suggest that deexcitation stimulated by infrared photons is not an efficient method for accelerating cascade to the ground state.

OSTI ID:
20787490
Journal Information:
Physical Review. A, Vol. 73, Issue 6; Other Information: DOI: 10.1103/PhysRevA.73.062507; (c) 2006 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 1050-2947
Country of Publication:
United States
Language:
English