skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interactive toxicity of chlorpyrifos and parathion in neonatal rats: Role of esterases in exposure sequence-dependent toxicity

Abstract

We previously reported that sequence of exposure to chlorpyrifos and parathion in adult rats can markedly influence toxic outcome. In the present study, we evaluated the interactive toxicity of chlorpyrifos (8 mg/kg, po) and parathion (0.5 mg/kg, po) in neonatal (7 days old) rats. Rats were exposed to the insecticides either concurrently or sequentially (separated by 4 h) and sacrificed at 4, 8, and 24 h after the first exposure for biochemical measurements (cholinesterase activity in brain, plasma, and diaphragm and carboxylesterase activity in plasma and liver). The concurrently-exposed group showed more cumulative lethality (15/24) than either of the sequential dosing groups. With sequential dosing, rats treated initially with chlorpyrifos prior to parathion (C/P) exhibited higher lethality (7/23) compared to those treated with parathion before chlorpyrifos (P/C; 1/24). At 8 h after initial dosing, brain cholinesterase inhibition was significantly greater in the C/P group (59%) compared to the P/C group (28%). Diaphragm and plasma cholinesterase activity also followed a relatively similar pattern of inhibition. Carboxylesterase inhibition in plasma and liver was relatively similar among the treatment groups across time-points. Similar sequence-dependent differences in brain cholinesterase inhibition were also noted with lower binary exposures to chlorpyrifos (2 mg/kg) and parathion (0.35more » mg/kg). In vitro and ex vivo studies compared relative oxon detoxification of carboxylesterases (calcium-insensitive) and A-esterases (calcium-sensitive) in liver homogenates from untreated and insecticide pretreated rats. Using tissues from untreated rats, carboxylesterases detoxified both chlorpyrifos oxon and paraoxon, while A-esterases only detoxified chlorpyrifos oxon. With parathion pretreatment, A-esterases still detoxified chlorpyrifos oxon while liver from chlorpyrifos pretreated rats had little apparent effect on paraoxon. We conclude that while neonatal rats are less capable than adults at detoxifying many organophosphorus insecticides including chlorpyrifos and parathion, toxicant-selective differences in detoxification play a role in sequence-dependent toxicity in both neonatal and adult rats with these two insecticides.« less

Authors:
 [1];  [1];  [1];  [1];  [2]
  1. Department of Physiological Sciences, 264 McElroy Hall, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078 (United States)
  2. Department of Physiological Sciences, 264 McElroy Hall, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078 (United States). E-mail: carey.pope@okstate.edu
Publication Date:
OSTI Identifier:
20783412
Resource Type:
Journal Article
Resource Relation:
Journal Name: Toxicology and Applied Pharmacology; Journal Volume: 210; Journal Issue: 1-2; Other Information: DOI: 10.1016/j.taap.2005.09.014; PII: S0041-008X(05)00581-8; Copyright (c) 2005 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; BRAIN; CALCIUM; CHOLINESTERASE; DETOXIFICATION; DIAPHRAGM; HOMOGENATES; IN VITRO; INHIBITION; LIVER; PARATHION; RATS; TOXICITY

Citation Formats

Kacham, R., Karanth, S., Baireddy, P., Liu, J., and Pope, C. Interactive toxicity of chlorpyrifos and parathion in neonatal rats: Role of esterases in exposure sequence-dependent toxicity. United States: N. p., 2006. Web. doi:10.1016/j.taap.2005.09.014.
Kacham, R., Karanth, S., Baireddy, P., Liu, J., & Pope, C. Interactive toxicity of chlorpyrifos and parathion in neonatal rats: Role of esterases in exposure sequence-dependent toxicity. United States. doi:10.1016/j.taap.2005.09.014.
Kacham, R., Karanth, S., Baireddy, P., Liu, J., and Pope, C. Sun . "Interactive toxicity of chlorpyrifos and parathion in neonatal rats: Role of esterases in exposure sequence-dependent toxicity". United States. doi:10.1016/j.taap.2005.09.014.
@article{osti_20783412,
title = {Interactive toxicity of chlorpyrifos and parathion in neonatal rats: Role of esterases in exposure sequence-dependent toxicity},
author = {Kacham, R. and Karanth, S. and Baireddy, P. and Liu, J. and Pope, C.},
abstractNote = {We previously reported that sequence of exposure to chlorpyrifos and parathion in adult rats can markedly influence toxic outcome. In the present study, we evaluated the interactive toxicity of chlorpyrifos (8 mg/kg, po) and parathion (0.5 mg/kg, po) in neonatal (7 days old) rats. Rats were exposed to the insecticides either concurrently or sequentially (separated by 4 h) and sacrificed at 4, 8, and 24 h after the first exposure for biochemical measurements (cholinesterase activity in brain, plasma, and diaphragm and carboxylesterase activity in plasma and liver). The concurrently-exposed group showed more cumulative lethality (15/24) than either of the sequential dosing groups. With sequential dosing, rats treated initially with chlorpyrifos prior to parathion (C/P) exhibited higher lethality (7/23) compared to those treated with parathion before chlorpyrifos (P/C; 1/24). At 8 h after initial dosing, brain cholinesterase inhibition was significantly greater in the C/P group (59%) compared to the P/C group (28%). Diaphragm and plasma cholinesterase activity also followed a relatively similar pattern of inhibition. Carboxylesterase inhibition in plasma and liver was relatively similar among the treatment groups across time-points. Similar sequence-dependent differences in brain cholinesterase inhibition were also noted with lower binary exposures to chlorpyrifos (2 mg/kg) and parathion (0.35 mg/kg). In vitro and ex vivo studies compared relative oxon detoxification of carboxylesterases (calcium-insensitive) and A-esterases (calcium-sensitive) in liver homogenates from untreated and insecticide pretreated rats. Using tissues from untreated rats, carboxylesterases detoxified both chlorpyrifos oxon and paraoxon, while A-esterases only detoxified chlorpyrifos oxon. With parathion pretreatment, A-esterases still detoxified chlorpyrifos oxon while liver from chlorpyrifos pretreated rats had little apparent effect on paraoxon. We conclude that while neonatal rats are less capable than adults at detoxifying many organophosphorus insecticides including chlorpyrifos and parathion, toxicant-selective differences in detoxification play a role in sequence-dependent toxicity in both neonatal and adult rats with these two insecticides.},
doi = {10.1016/j.taap.2005.09.014},
journal = {Toxicology and Applied Pharmacology},
number = 1-2,
volume = 210,
place = {United States},
year = {Sun Jan 15 00:00:00 EST 2006},
month = {Sun Jan 15 00:00:00 EST 2006}
}
  • Chlorpyrifos (CPF) is a widely used organophosphorus insecticide (OP) and putative developmental neurotoxicant in humans. The acute toxicity of CPF is elicited by acetylcholinesterase (AChE) inhibition. We characterized dose-related (0.1, 0.5, 1 and 2 mg/kg) gene expression profiles and changes in cell signaling pathways 24 h following acute CPF exposure in 7-day-old rats. Microarray experiments indicated that approximately 9% of the 44,000 genes were differentially expressed following either one of the four CPF dosages studied (546, 505, 522, and 3,066 genes with 0.1, 0.5, 1.0 and 2.0 mg/kg CPF). Genes were grouped according to dose-related expression patterns using K-means clusteringmore » while gene networks and canonical pathways were evaluated using Ingenuity Pathway Analysis (registered) . Twenty clusters were identified and differential expression of selected genes was verified by RT-PCR. The four largest clusters (each containing from 276 to 905 genes) constituted over 50% of all differentially expressed genes and exhibited up-regulation following exposure to the highest dosage (2 mg/kg CPF). The total number of gene networks affected by CPF also rose sharply with the highest dosage of CPF (18, 16, 18 and 50 with 0.1, 0.5, 1 and 2 mg/kg CPF). Forebrain cholinesterase (ChE) activity was significantly reduced (26%) only in the highest dosage group. Based on magnitude of dose-related changes in differentially expressed genes, relative numbers of gene clusters and signaling networks affected, and forebrain ChE inhibition only at 2 mg/kg CPF, we focused subsequent analyses on this treatment group. Six canonical pathways were identified that were significantly affected by 2 mg/kg CPF (MAPK, oxidative stress, NF{Kappa}B, mitochondrial dysfunction, arylhydrocarbon receptor and adrenergic receptor signaling). Evaluation of different cellular functions of the differentially expressed genes suggested changes related to olfactory receptors, cell adhesion/migration, synapse/synaptic transmission and transcription/translation. Nine genes were differentially affected in all four CPF dosing groups. We conclude that the most robust, consistent changes in differential gene expression in neonatal forebrain across a range of acute CPF dosages occurred at an exposure level associated with the classical marker of OP toxicity, AChE inhibition. Disruption of multiple cellular pathways, in particular cell adhesion, may contribute to the developmental neurotoxicity potential of this pesticide.« less
  • Parathion (PS) and chlorpyrifos (CPF) are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). Endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) can modulate neurotransmission by inhibiting neurotransmitter release. We proposed that differential inhibition of eCB-degrading enzymes (fatty acid amide hydrolase, FAAH, and monoacylglycerol lipase, MAGL) by PS and CPF leads to differences in extracellular eCB levels and toxicity. Microdialysis cannulae were implanted into hippocampus of adult male rats followed by treatment with vehicle (peanut oil, 2 ml/kg, sc), PS (27 mg/kg) or CPF (280 mg/kg) 6–7 days later. Signs of toxicity, AChE, FAAH and MAGL inhibition, and extracellularmore » levels of AEA and 2AG were measured 2 and 4 days later. Signs were noted in PS-treated rats but not in controls or CPF-treated rats. Cholinesterase inhibition was extensive in hippocampus with PS (89–90%) and CPF (78–83%) exposure. FAAH activity was also markedly reduced (88–91%) by both OPs at both time-points. MAGL was inhibited by both OPs but to a lesser degree (35–50%). Increases in extracellular AEA levels were noted after either PS (about 2-fold) or CPF (about 3-fold) while lesser treatment-related 2-AG changes were noted. The cannabinoid CB1 receptor antagonist/inverse agonist AM251 (3 mg/kg, ip) had no influence on functional signs after CPF but markedly decreased toxicity in PS-treated rats. The results suggest that extracellular eCBs levels can be markedly elevated by both PS and CPF. CB1-mediated signaling appears to play a role in the acute toxicity of PS but the role of eCBs in CPF toxicity remains unclear. - Highlights: • Chlorpyrifos and parathion both extensively inhibited hippocampal cholinesterase. • Functional signs were only noted with parathion. • Chlorpyrifos and parathion increased hippocampal extracellular anandamide levels. • 2-Arachidonoylglycerol levels were lesser affected. • The CB1 antagonist AM251 had no effect on chlorpyrifos but reduced parathion toxicity.« less
  • Juvenile rats are more susceptible than adults to the acute toxicity of organophosphorus insecticides like chlorpyrifos (CPF). Age- and dose-dependent differences in metabolism may be responsible. Of importance is CYP450 activation and detoxification of CPF to CPF-oxon and 3,5,6-trichloro-2-pyridinol (TCP), as well as B-esterase (cholinesterase; ChE) and A-esterase (PON-1) detoxification of CPF-oxon to TCP. The pharmacokinetics of CPF, TCP, and the extent of blood (plasma/RBC), and brain ChE inhibition in rats were determined on postnatal days (PND) -5, -12, and -17 following oral gavage administration of 1 and 10 mg CPF/kg of body weight. For all neonatal ages the bloodmore » TCP exceeded the CPF concentration, and within each age group there was no evidence of non-linear kinetics over the dose range evaluated. Younger animals demonstrated a greater sensitivity to ChE inhibition as evident by the dose- and age-dependent inhibition of plasma, RBC, and brain ChE. Of particular importance was the observation that even in rats as young as PND-5, the CYP450 metabolic capacity was adequate to metabolize CPF to both TCP and CPF-oxon based on the detection of TCP in blood and extensive ChE inhibition (biomarker of CPF-oxon) at all ages. In addition, the increase in the blood TCP concentration ({approx}3-fold) in PND-17 rats relative to the response in the younger animals, and the higher blood concentrations of CPF in neonatal rats (1.7 to 7.5-fold) relative to adults was consistent with an increase in CYP450 metabolic capacity with age. This is the first reported study that evaluated both the pharmacokinetics of the parent pesticide, the major metabolite and the extent of ChE inhibition dynamics in the same animals as a function of neonatal age. The results suggest that in the neonatal rat, CPF was rapidly absorbed and metabolized, and the extent of metabolism was age-dependent.« less
  • Exposure to apparently unrelated neurotoxicants can nevertheless converge on common neurodevelopmental events. We examined the long-term effects of developmental exposure of rats to terbutaline, a {beta}-adrenoceptor agonist used to arrest preterm labor, and the organophosphorus insecticide chlorpyrifos (CPF) separately and together. Treatments mimicked the appropriate neurodevelopmental stages for human exposures: terbutaline on postnatal days (PN) 2-5 and CPF on PN11-14, with assessments conducted on PN45. Although neither treatment affected growth or viability, each elicited alterations in CNS cell signaling mediated by adenylyl cyclase (AC), a transduction pathway shared by numerous neuronal and hormonal signals. Terbutaline altered signaling in the brainstemmore » and cerebellum, with gender differences particularly notable in the cerebellum (enhanced AC in males, suppressed in females). By itself, CPF exposure elicited deficits in AC signaling in the midbrain, brainstem, and striatum. However, sequential exposure to terbutaline followed by CPF produced larger alterations and involved a wider spectrum of brain regions than were obtained with either agent alone. In the cerebral cortex, adverse effects of the combined treatment intensified between PN45 and PN60, suggesting that exposures alter the long-term program for development of synaptic communication, leading to alterations in AC signaling that emerge even after adolescence. These findings indicate that terbutaline, like CPF, is a developmental neurotoxicant, and reinforce the idea that its use in preterm labor may create a subpopulation that is sensitized to long-term CNS effects of organophosphorus insecticides.« less
  • There is a paucity of data on neonatal systemic exposure using different dosing paradigms. Male CD (Sprague-Dawley derived) rats at postnatal day (PND) 5 were dosed with chlorpyrifos (CPF, 1 mg/kg) using different routes of exposure, vehicles, and single vs. divided doses. Blood concentrations of CPF and its primary metabolite, trichloropyridinol (TCP), were measured at multiple times through 24 h. Groups included: single gavage bolus vs. divided gavage doses in corn oil (1 vs 3 times in 24 h), single gavage bolus vs. divided gavage doses in rat milk, and subcutaneous administration in DMSO. These data were compared with lactationalmore » exposure of PND 5 pups from dams exposed to CPF in the diet at 5 mg/kg/day for four weeks or published data from dams exposed to daily gavage with CPF at 5 mg/kg/day. Maternal blood CPF levels were an order of magnitude lower from dietary exposure than gavage (1.1 vs 14.8 ng/g), and blood CPF levels in PND 5 pups that nursed dietary-exposed or gavage-exposed dams were below the limit of detection. Single gavage doses of 1 mg/kg CPF in corn oil vehicle in pups resulted in CPF blood levels of 49 ng/g, and in milk vehicle about 9 ng/g. Divided doses led to lower peak CPF levels. A bolus dose of 1 mg/kg CPF in DMSO administered sc appeared to have substantially altered pharmacokinetics from orally administered chlorpyrifos. To be meaningful for risk assessment, neonatal studies require attention to the exposure scenario, since route, vehicle, dose and frequency of administration result in different systemic exposure to the test chemical and its metabolites.« less