skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Anisotropic k-essence cosmologies

Journal Article · · Physical Review. D, Particles Fields
;  [1]
  1. Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)

We investigate a Bianchi type-I cosmology with k-essence and find the set of models which dissipate the initial anisotropy. There are cosmological models with extended tachyon fields and k-essence having a constant barotropic index. We obtain the conditions leading to a regular bounce of the average geometry and the residual anisotropy on the bounce. For constant potential, we develop purely kinetic k-essence models which are dust dominated in their early stages, dissipate the initial anisotropy, and end in a stable de Sitter accelerated expansion scenario. We show that linear k-field and polynomial kinetic function models evolve asymptotically to Friedmann-Robertson-Walker cosmologies. The linear case is compatible with an asymptotic potential interpolating between V{sub l}{proportional_to}{phi}{sup -{gamma}{sub l}}, in the shear dominated regime, and V{sub l}{proportional_to}{phi}{sup -2} at late time. In the polynomial case, the general solution contains cosmological models with an oscillatory average geometry. For linear k-essence, we find the general solution in the Bianchi type-I cosmology when the k field is driven by an inverse square potential. This model shares the same geometry as a quintessence field driven by an exponential potential.

OSTI ID:
20782606
Journal Information:
Physical Review. D, Particles Fields, Vol. 73, Issue 6; Other Information: DOI: 10.1103/PhysRevD.73.063502; (c) 2006 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 0556-2821
Country of Publication:
United States
Language:
English