skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A single amino acid substitution within the transmembrane domain of the human immunodeficiency virus type 1 Vpu protein renders simian-human immunodeficiency virus (SHIV{sub KU-1bMC33}) susceptible to rimantadine

Journal Article · · Virology
 [1];  [1];  [1];  [1];  [1];  [1]
  1. Department of Anatomy and Cell Biology, University of Kansas Medical Center 3901 Rainbow Blvd., Kansas City, KS 66160 (United States)

Previous studies from our laboratory have shown that the transmembrane domain (TM) of the Vpu protein of human immunodeficiency virus type 1 (HIV-1) contributes to the pathogenesis of SHIV{sub KU-1bMC33} in macaques and that the TM domain of Vpu could be replaced with the M2 protein viroporin from influenza A virus. Recently, we showed that the replacement of the TM domain of Vpu with that of the M2 protein of influenza A virus resulted in a virus (SHIV{sub M2}) that was sensitive to rimantadine [Hout, D.R., Gomez, M.L., Pacyniak, E., Gomez, L.M., Inbody, S.H., Mulcahy, E.R., Culley, N., Pinson, D.M., Powers, M.F., Wong, S.W., Stephens, E.B., 2006. Substitution of the transmembrane domain of Vpu in simian human immunodeficiency virus (SHIV{sub KU-1bMC33}) with that of M2 of influenza A results in a virus that is sensitive to inhibitors of the M2 ion channel and is pathogenic for pig-tailed macaques. Virology 344, 541-558]. Based on previous studies of the M2 protein which have shown that the His-X-X-X-Trp motif within the M2 is essential to the function of the M2 proton channel, we have constructed a novel SHIV in which the alanine at position 19 of the TM domain was replaced with a histidine residue resulting in the motif His-Ile-Leu-Val-Trp. The SHIV{sub VpuA19H} replicated with similar kinetics as the parental SHIV{sub KU-1bMC33} and pulse-chase analysis revealed that the processing of viral proteins was similar to SHIV{sub KU-1bMC33}. This SHIV{sub VpuA19H} virus was found to be more sensitive to the M2 ion channel blocker rimantadine than SHIV{sub M2}. Electron microscopic examination of SHIV{sub VpuA19H}-infected cells treated with rimantadine revealed an accumulation of viral particles at the cell surface and within intracellular vesicles, which was similar to that previously observed to SHIV{sub M2}-infected cells treated with rimantadine. These data indicate that the Vpu protein of HIV-1 can be converted into a rimantadine-sensitive ion channel with the alteration of one amino acid and provide additional evidence that drugs targeting the Vpu TM/ion channel can be effective anti-HIV-1 drugs.

OSTI ID:
20779491
Journal Information:
Virology, Vol. 348, Issue 2; Other Information: DOI: 10.1016/j.virol.2005.12.025; PII: S0042-6822(05)00817-2; Copyright (c) 2005 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0042-6822
Country of Publication:
United States
Language:
English