skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonlinear model dynamics for closed-system, constrained, maximal-entropy-generation relaxation by energy redistribution

Journal Article · · Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
DOI:https://doi.org/10.1103/PHYSREVE.73.0· OSTI ID:20778702
 [1]
  1. Universita di Brescia, via Branze 38, 25123 Brescia (Italy)

We discuss a nonlinear model for relaxation by energy redistribution within an isolated, closed system composed of noninteracting identical particles with energy levels e{sub i} with i=1,2,...,N. The time-dependent occupation probabilities p{sub i}(t) are assumed to obey the nonlinear rate equations {tau} dp{sub i}/dt=-p{sub i} ln p{sub i}-{alpha}(t)p{sub i}-{beta}(t)e{sub i}p{sub i} where {alpha}(t) and {beta}(t) are functionals of the p{sub i}(t)'s that maintain invariant the mean energy E={sigma}{sub i=1}{sup N}e{sub i}p{sub i}(t) and the normalization condition 1={sigma}{sub i=1}{sup N}p{sub i}(t). The entropy S(t)=-k{sub B}{sigma}{sub i=1}{sup N}p{sub i}(t)ln p{sub i}(t) is a nondecreasing function of time until the initially nonzero occupation probabilities reach a Boltzmann-like canonical distribution over the occupied energy eigenstates. Initially zero occupation probabilities, instead, remain zero at all times. The solutions p{sub i}(t) of the rate equations are unique and well defined for arbitrary initial conditions p{sub i}(0) and for all times. The existence and uniqueness both forward and backward in time allows the reconstruction of the ancestral or primordial lowest entropy state. By casting the rate equations in terms not of the p{sub i}'s but of their positive square roots {radical}(p{sub i}), they unfold from the assumption that time evolution is at all times along the local direction of steepest entropy ascent or, equivalently, of maximal entropy generation. These rate equations have the same mathematical structure and basic features as the nonlinear dynamical equation proposed in a series of papers ending with G. P. Beretta, Found. Phys. 17, 365 (1987) and recently rediscovered by S. Gheorghiu-Svirschevski [Phys. Rev. A 63, 022105 (2001);63, 054102 (2001)]. Numerical results illustrate the features of the dynamics and the differences from the rate equations recently considered for the same problem by M. Lemanska and Z. Jaeger [Physica D 170, 72 (2002)]. We also interpret the functionals k{sub B}{alpha}(t) and k{sub B}{beta}(t) as nonequilibrium generalizations of the thermodynamic-equilibrium Massieu characteristic function and inverse temperature, respectively.

OSTI ID:
20778702
Journal Information:
Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, Vol. 73, Issue 2; Other Information: DOI: 10.1103/PhysRevE.73.026113; (c) 2006 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 1063-651X
Country of Publication:
United States
Language:
English