Edge ion heating by launched high harmonic fast waves in the National Spherical Torus Experiment
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)
A new spectroscopic diagnostic on the National Spherical Torus Experiment (NSTX) [J. Spitzer, M. Ono, M. Peng, D. Bashore, T. Bigelow, A. Brooks, J. Chrzanowaki, H. M. Fan, P. Heitzenroeder, T. Jarboe et al., Fusion Technol2. 30, 1337 (1996)] measures the velocity distribution of ions in the plasma edge simultaneously along both poloidal and toroidal views. An anisotropic ion temperature is measured during high power high harmonic fast wave (HHFW) rf heating in helium plasmas, with the poloidal ion temperature roughly twice the toroidal ion temperature. Moreover, the measured spectral distribution suggests that two populations of ions are present and have temperatures of typically 500 eV and 50 eV with rotation velocities of -50 km/s and -10 km/s, respectively (predominantly perpendicular to the local magnetic field). This bimodal distribution is observed in both the toroidal and poloidal views (for both He{sup +} and C{sup 2+} ions), and is well correlated with the period of rf power application to the plasma. The temperature of the hot component is observed to increase with the applied rf power, which was scanned between 0 and 4.3 MW. The 30 MHz HHFW launched by the NSTX antenna is expected and observed to heat core electrons, but plasma ions do not resonate with the launched wave, which is typically at >10th harmonic of the ion cyclotron frequency in the region of observation. A likely ion heating mechanism is parametric decay of the launched HHFW into an ion Bernstein wave (IBW). The presence of the IBW in NSTX plasmas during HHFW application has been directly confirmed with probe measurements. IBW heating occurs in the perpendicular ion distribution, consistent with the toroidal and poloidal observations. Calculations of IBW propagation indicate that multiple waves could be created in the parametric decay process, and that most of the IBW power would be absorbed in the outer 10-20 cm of the plasma, predominantly on fully stripped ions. These predictions are in qualitative agreement with the observations and must be accounted for when calculating the energy budget of the plasma.
- OSTI ID:
- 20736573
- Journal Information:
- Physics of Plasmas, Journal Name: Physics of Plasmas Journal Issue: 5 Vol. 12; ISSN PHPAEN; ISSN 1070-664X
- Country of Publication:
- United States
- Language:
- English
Similar Records
Edge Ion Heating by Launched High Harmonic Fast Waves in NSTX
Observations of Anisotropic Ion Temperature in the NSTX Edge during RF Heating
Observations of Anisotropic Ion Temperature during RF Heating in the NSTX Edge
Technical Report
·
Tue Nov 30 23:00:00 EST 2004
·
OSTI ID:836477
Observations of Anisotropic Ion Temperature in the NSTX Edge during RF Heating
Technical Report
·
Thu Oct 21 00:00:00 EDT 2004
·
OSTI ID:835926
Observations of Anisotropic Ion Temperature during RF Heating in the NSTX Edge
Technical Report
·
Mon May 19 00:00:00 EDT 2003
·
OSTI ID:814015