skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-pressure synthesis and electrochemical behavior of layered (1-a)LiNi{sub 1-y}Al{sub y}O{sub 2}.aLi[Li{sub 1/3}Ni{sub 2/3}]O{sub 2} oxides

Journal Article · · Journal of Solid State Chemistry
 [1];  [1];  [1];  [2];  [3];  [3]
  1. Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)
  2. Bayerisches Geoinstitut, Universitaet Bayreuth, D-95440 Bayreuth (Germany)
  3. Laboratorio de Quimica Inorganica, Facultad de Ciencias, Universidad de Cordoba, 14071 Cordoba (Spain)

Layered (1-a)LiNi{sub 1-y}Al{sub y}O{sub 2}.aLi[Li{sub 1/3}Ni{sub 2/3}]O{sub 2} oxides, 0=<a<0.4, have been prepared by solid state reaction between NiO, Al{sub 2}O{sub 3} and Li{sub 2}O{sub 2} under high pressure. The structural characterization of the layered oxides was performed using powder XRD, IR spectroscopy and EPR spectroscopy at 9.23 and 115GHz. It has been found that the high-pressure favors Al substitution for Ni in the NiO{sub 2}-layers of layered LiNiO{sub 2}. A random Al/Ni distribution in the layer was found. The incorporation of extra Li in the Ni{sub 1-y}Al{sub y}O{sub 2}-layer starts at a precursor composition Li/(Ni+Al)>1.2. While pure NiO{sub 2}-layers are able to incorporate under high-pressure up to 1/3Li, the appearance of Al in the NiO{sub 2}-layers hinders Li{sup +} dissolution (Li<(1-y)/3). In addition, with increasing Al content there is a strong cationic mixing between the layers. High-frequency EPR of Ni{sup 3+} indicates that the structural interaction of LiAl{sub y}Ni{sub 1-y}O{sub 2} with Li[Li{sub 1/3}Ni{sub 2/3}]O{sub 2} proceeds via the formation of domains comprising different amount of Ni{sup 3+} ions. The use of Li{sub 1.08}Al{sub 0.09}Ni{sub 0.83}O{sub 2} as a cathode material in a lithium ion cells displays a first irreversible Li extraction at 4.8V, after which a reversible lithium insertion/extraction between 3.0 and 4.5V is observed on further cycling.

OSTI ID:
20729075
Journal Information:
Journal of Solid State Chemistry, Vol. 178, Issue 9; Other Information: DOI: 10.1016/j.jssc.2005.06.006; PII: S0022-4596(05)00249-5; Copyright (c) 2005 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English