Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

The naphthalene catabolic (nag) genes of Polaromonas naphthalenivorans CJ2: Evolutionary implications for two gene clusters and novel regulatory control

Journal Article · · Applied and Environmental Microbiology
; ; ; ;  [1]
  1. Cornell University, Ithaca, NY (United States). Dept. of Microbiology

Polaromonas naphthalenivorans CJ2, found to be responsible for the degradation of naphthalene in situ at a coal tar waste-contaminated site, is able to grow on mineral salts agar media with naphthalene as the sole carbon source. Beginning from a 484-bp nagAc-like region, we used a genome walking strategy to sequence genes encoding the entire naphthalene degradation pathway and additional flanking regions. We found that the naphthalene catabolic genes in P. naphthalenivorans CJ2 were divided into one large and one small gene cluster, separated by an unknown distance. The large gene cluster is bounded by a LysR-type regulator (nagR). The small cluster is bounded by a MarR-type regulator (nagR2). The catabolic genes of P. naphthalenivorans CJ2 were homologous to many of those of Ralstonia U2, which uses the gentisate pathway to convert naphthalene to central metabolites. However, three open reading frames (nagY, nagM, and nagN), present in Ralstonia U2, were absent. Also, P. naphthalenivorans carries two copies of gentisate dioxygenase (nagI) with 77.4% DNA sequence identity to one another and 82% amino acid identity to their homologue in Ralstonia sp. strain U2. Investigation of the operons using reverse transcription PCR showed that each cluster was controlled independently by its respective promoter. Insertional inactivation and lacZ reporter assays showed that nagR2 is a negative regulator and that expression of the small cluster is not induced by naphthalene, salicylate, or gentisate. Association of two putative Azoarcus-related transposases with the large cluster and one Azoarcus-related putative salicylate 5-hydroxylase gene (ORF2) in the small cluster suggests that mobile genetic elements were likely involved in creating the novel arrangement of catabolic and regulatory genes in P. naphthalenivorans.

OSTI ID:
20727682
Journal Information:
Applied and Environmental Microbiology, Journal Name: Applied and Environmental Microbiology Journal Issue: 2 Vol. 72; ISSN AEMIDF; ISSN 0099-2240
Country of Publication:
United States
Language:
English

Similar Records

Heterologous expression and localization of gentisate transporter Ncg12922 from Corynebacterium glutamicum ATCC 13032
Journal Article · Fri Jul 28 00:00:00 EDT 2006 · Biochemical and Biophysical Research Communications · OSTI ID:20854383

Bioluminescent reporters for catabolic gene expression and pollutant bioavailability
Conference · Mon Dec 31 23:00:00 EST 1990 · OSTI ID:6390215

Comparative genomics reveals the high diversity and adaptation strategies of Polaromonas from polar environments
Journal Article · Fri Mar 14 00:00:00 EDT 2025 · BMC Genomics · OSTI ID:2530996