skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The applicability of simultaneous TRUS-CT imaging for the evaluation of prostate seed implants

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.1940147· OSTI ID:20726088
; ; ; ; ;  [1]
  1. Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

To study dose-effect relations of prostate implants with I-125 seeds, accurate knowledge of the dose distribution in the prostate is essential. Commonly, a post-implant computed tomography (CT) scan is used to determine the geometry of the implant and to delineate the contours of the prostate. However, the delineation of the prostate on CT slices is very cumbersome due to poor contrast between the prostate capsule and surrounding tissues. Transrectal Ultrasound (TRUS) on the other hand offers good visualization of the prostate but poor visualization of the implanted seeds. The purpose of this study was to investigate the applicability of combining CT with 3D TRUS by means of image fusion. The advantage of fused TRUS-CT imaging is that both prostate contours and implanted seeds will be well visible. In our clinic, post-implant imaging was realized by simultaneously acquiring a TRUS scan and a CT scan. The TRUS transducer was inserted while the patient was on the CT couch and the CT scan was made directly after the TRUS scan, with the probe still in situ. With the TRUS transducer being visible on both TRUS and CT images, the geometrical relationship between both image sets could be defined by registration on the transducer. Having proven the applicability of simultaneous imaging, the accuracy of this registration method was investigated by additional registration on visible seeds, after preregistration on the transducer. In 4 out of 23 investigated cases an automatic grey value registration on seeds failed for each of the investigated cost functions, and in 2 cases for both cost functions, due to poor visibility of the seeds on the TRUS scan. The average deviations of the seed registration with respect to the transducer registration were negligible. However, in a few individual cases the deviations were significant and probably due to movement of the patient between TRUS and CT scan. In case of a registration on the transducer it is important to avoid patient movement in-between the TRUS and CT scan and to keep the time in-between the scans as short as possible. It can be concluded that fusion of a CT scan and a simultaneously made TRUS scan by means of a three-dimensional (3D) transducer is feasible and accurate when performing a registration on the transducer, if necessary, fine-tuned by a registration on seeds. These fused images are likely to be of great value for post-implant dose distribution evaluations.

OSTI ID:
20726088
Journal Information:
Medical Physics, Vol. 32, Issue 7; Other Information: DOI: 10.1118/1.1940147; (c) 2005 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English