skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Compton-scattering measurement of diagnostic x-ray spectrum using high-resolution Schottky CdTe detector

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.1921647· OSTI ID:20726054
; ;  [1]
  1. Department of Clinical Radiology, Faculty of Health Sciences, Hiroshima International University, 555-36 Gakuen-dai, Kurose-cho, Kamo-gun, Hiroshima 724-0695 (Japan)

The analysis of x-ray spectra is important for quality assurance (QA) and quality control (QC) of radiographic systems. The aim of this study is to measure the diagnostic x-ray spectra under clinical conditions using a high-resolution Schottky CdTe detector. Under clinical conditions, the direct measurement of a diagnostic spectrum is difficult because of the high photon fluence rates that cause significant detector photon pile-up. An alternative way of measuring the output spectra from a tube is first to measure the 90 deg Compton scattered photons from a given sample. With this set-up detector, pile-up is not a problem. From the scattered spectrum one can then use an energy correction and the Klein-Nishina function to reconstruct the actual spectrum incident upon the scattering sample. The verification of whether our spectra measured by the Compton method are accurate was accomplished by comparing exposure rates calculated from the reconstructed spectra to those measured with an ionization chamber. We used aluminum (Al) filtration ranging in thickness from 0 to 6 mm. The half value layers (HVLs) obtained for a 70 kV beam were 2.78 mm via the ionization chamber measurements and 2.93 mm via the spectral measurements. For a 100 kV beam we obtained 3.98 and 4.32 mm. The small differences in HVLs obtained by both techniques suggest that Compton scatter spectroscopy with a Schottky CdTe detector is suitable for measuring the diagnostic x-ray spectra and useful for QA and QC of clinical x-ray equipment.

OSTI ID:
20726054
Journal Information:
Medical Physics, Vol. 32, Issue 6; Other Information: DOI: 10.1118/1.1921647; (c) 2005 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English