Fragmentation and Coulomb explosion of deuterium clusters by the interaction with intense laser pulses
- Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47005 Valladolid (Spain)
Experiments of Zweiback et al. [Phys. Rev. Lett. 84, 2634 (2000)] on the interaction of intense femtosecond laser pulses with a dense molecular beam of large deuterium clusters have shown that these clusters can lose most of their electrons and explode, in a process known as Coulomb explosion. The collisions between the fast deuterium (D) nuclei give rise to D-D fusion. This has motivated us to carry out computer simulations based on the time-dependent density-functional theory in order to understand the ultrafast processes occurring under these high excitations. In particular we have studied the laser irradiation of the singly charged cluster D{sub 13}{sup +}. The simulations show the occurrence of two different cluster fragmentation behaviors, depending on the intensity of the laser pulse: For not too large intensities, the cluster becomes disassembled in a slow way, whereas for large laser intensities substantial ionization takes place and a violent explosion occurs due to the electrostatic repulsion between the nuclei following the loss of the electrons by the cluster. The fast fragmentation mode fits well into the idea of the Coulomb explosion.
- OSTI ID:
- 20718153
- Journal Information:
- Physical Review. A, Journal Name: Physical Review. A Journal Issue: 2 Vol. 72; ISSN 1050-2947; ISSN PLRAAN
- Country of Publication:
- United States
- Language:
- English
Similar Records
Nuclear Fusion Driven by Coulomb Explosions of Large Deuterium Clusters
Coulomb explosion of deuterium clusters in a magnetic trap and generation of neutrons