Collective quantization of three-flavored Skyrmions reexamined
- Department of Physics, University of Maryland, College Park, Maryland 20742-4111 (United States)
A self-consistent large N{sub c} approach is developed for the collective quantization of SU(3) flavor hedgehog solitons, such as the Skyrmion. The key to this analysis is the determination of all of the zero-modes associated with small fluctuations around the hedgehog. These are used in the conventional way to construct collective coordinates. This approach differs from previous work in that it does not implicitly assume that each static zero-mode is associated with a dynamical zero-mode. It is demonstrated explicitly in the context of the Skyrmion that there are fewer dynamical zero-modes than static ones due to the Witten-Wess-Zumino term in the action. Group-theoretic methods are employed to identify the physical states resulting from canonical quantization of the collectively rotating soliton. The collective states fall into representations of SU(3) flavor labeled by (p,q) and are given by (2J,(Nc/2)-J) where J=(1/2),(3/2),{center_dot}{center_dot}{center_dot} is the spin of the collective state. States with strangeness S>0 do not arise as collective states from this procedure; thus the {theta}{sup +} (pentaquark) resonance does not arise as a collective excitation in models of this type.
- OSTI ID:
- 20713829
- Journal Information:
- Physical Review. D, Particles Fields, Journal Name: Physical Review. D, Particles Fields Journal Issue: 9 Vol. 72; ISSN PRVDAQ; ISSN 0556-2821
- Country of Publication:
- United States
- Language:
- English
Similar Records
Quantum-mechanical aspects of SU(3) Skyrme model in collective-coordinate quantization
Strange skyrmion molecules