skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Response of test masses to gravitational waves in the local Lorentz gauge

Journal Article · · Physical Review. D, Particles Fields
 [1]
  1. Department of Physics, University of Florida, Gainesville, Florida 32611 (United States)

The local Lorentz gauge represents a natural coordinate frame for an observer to analyze the effect of gravitational waves on detectors, and has been widely used to describe the response of resonant bars. Its application to laser interferometers has thus far been restricted to the long-wavelength regime, in which the separation between the test masses is much less than the wavelength of the gravitational waves. In this paper we show that the local Lorentz gauge can be used for calculations of geodesic deviations of the masses even when their separation is comparable to or greater than the wavelength of the gravitational waves. We find that a complete description of the gravitational waves in this gauge requires taking into account three different effects: displacements of the test masses, the gravitational redshift of light propagating between the masses, and variations in the rates of stationary clocks, all of which are induced by the gravitational wave. Only when taken together do these three effects represent a quantity which is translationally invariant and which can be observed in experiments. This translationally invariant quantity is identical to the response function calculated in the transverse traceless gauge.

OSTI ID:
20709074
Journal Information:
Physical Review. D, Particles Fields, Vol. 71, Issue 8; Other Information: DOI: 10.1103/PhysRevD.71.084003; (c) 2005 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 0556-2821
Country of Publication:
United States
Language:
English