Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Chemical order and selection of the mechanism for strain relaxation in epitaxial FePd(Pt) thin layers

Journal Article · · Physical Review. B, Condensed Matter and Materials Physics
; ; ; ;  [1];  [2]
  1. CEA Grenoble/Departement de Recherche Fondamentale sur la Matiere Condensee, Service de Physique des Materiaux et Microstructures, 17 avenue des Martyrs, 38054 Grenoble Cedex (France)
  2. Laboratoire de Thermodynamique et Physicochimie Metallurgiques/CNRS, BP 75, 38402 Saint Martin d'Heres (France)

We observed that the relaxation mechanism of the epitaxial strain is dramatically dependent on the chemical ordering within the L1{sub 0} structure in FePd(Pt) thin films. In disordered or weakly ordered layers, the relaxation takes place though perfect (1/2)[101] dislocations, whereas well-ordered films relax through the partial 1/6[112] Shockley dislocations, piled-up within microtwins, with a huge impact on both the morphology and the magnetic properties of the film. We show that the antiphase boundary energy is the key factor preventing the propagation of perfect dislocations in ordered alloys.

OSTI ID:
20664948
Journal Information:
Physical Review. B, Condensed Matter and Materials Physics, Journal Name: Physical Review. B, Condensed Matter and Materials Physics Journal Issue: 17 Vol. 70; ISSN 1098-0121
Country of Publication:
United States
Language:
English

Similar Records

Ordering and the relaxation of elastic strain in thin Au-Ni films grown on Au(001)
Journal Article · Thu Oct 31 23:00:00 EST 1996 · Acta Materialia · OSTI ID:415430

Domain wall pinning on strain relaxation defects (stacking faults) in nanoscale FePd (001)/MgO thin films
Journal Article · Mon Oct 05 00:00:00 EDT 2015 · Applied Physics Letters · OSTI ID:22482213

Growth of L1{sub 0}-ordered crystal in FePt and FePd thin films on MgO(001) substrate
Journal Article · Mon Aug 15 00:00:00 EDT 2016 · AIP Advances · OSTI ID:22611439