skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis, characterization and thermal properties of new aromatic quaternary ammonium bromides: precursors for ionic liquids and complexation studies

Journal Article · · Journal of Solid State Chemistry
 [1];  [1];  [1];  [1];  [1]
  1. Department of Chemistry, University of Jyvaeskylae, P.O. Box 35, 40014 Jyvaeskylae (Finland)

Series of new aromatic R{sub 2}R'{sub 2}N{sup +}Br{sup -} (R=benzyl, 4-methylbenzyl, 2-phenylethyl, 3-phenylpropyl; R'=ethyl, methyl, isopropyl) or RR'{sub 2}NH{sup +}Br{sup -}-type (R=benzyl, R'=isopropyl) quaternary ammonium bromides were prepared by using novel synthetic route in which a formamide (N,N-diethylformamide, N,N-dimethylformamide, N,N-diisopropylformamide) is treated with aralkyl halide in presence of a weak base. The compounds were characterized by {sup 1}H-NMR and {sup 13}C-NMR spectroscopy and mass spectrometry. Structures of the crystalline compounds were determined by X-ray single crystal diffraction, and in addition the powder diffraction method was used to study the structural similarities between the single crystal and microcrystalline bulk material. Three of the compounds crystallized in monoclinic, two in orthorhombic and one in triclinic crystal system, showing ion pairs, which are interconnected by weak hydrogen bonds and weak {pi}-{pi} interactions between the phenyl rings. Three of the compounds appeared as viscous oil or waxes. Finally, TG/DTA and DSC methods were used to analyze thermal properties of the prepared compounds. The lowest melting points were obtained for diethyldi-(2-phenylethyl)ammonium bromide (122.2{sup o}C) and for diethyldi-(3-phenylpropyl)-ammonium bromide (109.1{sup o}C). In general, decomposition of the compounds started at 170-190{sup o}C without identifiable cleavages, thus liquid ranges of 30-70{sup o}C were observed for some of the compounds.

OSTI ID:
20653396
Journal Information:
Journal of Solid State Chemistry, Vol. 177, Issue 10; Other Information: DOI: 10.1016/j.jssc.2004.06.046; PII: S0022-4596(04)00354-8; Copyright (c) 2004 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English