The reaction dynamics of alkali dimer molecules and electronically excited alkali atoms with simple molecules
- Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
This dissertation presents the results from the crossed molecular beam studies on the dynamics of bimolecular collisions in the gas phase. The primary subjects include the interactions of alkali dimer molecules with simple molecules, and the inelastic scattering of electronically excited alkali atoms with O2. The reaction of the sodium dimers with oxygen molecules is described in Chapter 2. Two reaction pathways were observed for this four-center molecule-molecule reaction, i.e. the formations of NaO2 + Na and NaO + NaO. NaO2 products exhibit a very anisotropic angular distribution, indicating a direct spectator stripping mechanism for this reaction channel. The NaO formation follows the bond breaking of O2, which is likely a result of a charge transfer from Na2 to the excited state orbital of O2-. The scattering of sodium dimers from ammonium and methanol produced novel molecules, NaNH3 and Na(CH3OH), respectively. These experimental observations, as well as the discussions on the reaction dynamics and the chemical bonding within these molecules, will be presented in Chapter 3. The lower limits for the bond dissociation energies of these molecules are also obtained. Finally, Chapter 4 describes the energy transfer between oxygen molecules and electronically excited sodium atoms.
- Research Organization:
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
- DOE Contract Number:
- AC03-76SF00098
- OSTI ID:
- 206522
- Report Number(s):
- LBL--38228; ON: DE96007732
- Country of Publication:
- United States
- Language:
- English
Similar Records
Reactive scattering of electronically excited alkali atoms with molecules
The reactions of Na{sub 2} with O{sub 2}