skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of a new electrodeposition process for plating of Zn-Ni-X (X=Cd, P) alloys. 1. Corrosion characteristics of Zn-Ni-Cd ternary alloys

Abstract

A new Zn-Ni-Cd plating process was developed which offers a unique way of controlling and optimizing the Ni and Cd contents in the final deposit. Zinc-nickel-cadmium alloy was deposited from a 0.5 M NiSO{sub 4} + 0.2 M ZnSO{sub 4} bath in the presence of 0.015 M CdSO{sub 4} and 1 g/L nonyl phenyl polyethylene oxide. Using this process a Zn-Ni-Cd ternary alloy, with a higher nickel content as compared to that obtained from conventional Zn-Ni baths, was synthesized. The Zn-Ni-Cd alloy coatings deposited from an electrolyte containing 0.015 M (0.3%) CdSO{sub 4} has a Zn to Ni ratio of 2.5:1. The increase in nickel content accounts for the observed decrease in the corrosion potential to a value lower than that of Cd but higher than the corrosion potential of iron. The coatings have superior corrosion resistance and barrier properties than the typical Zn-Ni and cadmium coatings. Polarization studies and electrochemical impedance spectroscopy analysis on Zn-Ni-Cd coatings show a barrier resistance that is ten times higher than that of a conventional Zn-Ni coating.

Authors:
; ; ;
Publication Date:
Research Org.:
Univ. of South Carolina, Columbia, SC (US)
OSTI Identifier:
20080578
Resource Type:
Journal Article
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 147; Journal Issue: 5; Other Information: PBD: May 2000; Journal ID: ISSN 0013-4651
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ZINC ALLOYS; NICKEL ALLOYS; CADMIUM ALLOYS; ELECTROPLATING; ELECTRODEPOSITED COATINGS; CORROSION RESISTANCE

Citation Formats

Durairajan, A., Haran, B.S., White, R.E., and Popov, B.N. Development of a new electrodeposition process for plating of Zn-Ni-X (X=Cd, P) alloys. 1. Corrosion characteristics of Zn-Ni-Cd ternary alloys. United States: N. p., 2000. Web. doi:10.1149/1.1393434.
Durairajan, A., Haran, B.S., White, R.E., & Popov, B.N. Development of a new electrodeposition process for plating of Zn-Ni-X (X=Cd, P) alloys. 1. Corrosion characteristics of Zn-Ni-Cd ternary alloys. United States. doi:10.1149/1.1393434.
Durairajan, A., Haran, B.S., White, R.E., and Popov, B.N. Mon . "Development of a new electrodeposition process for plating of Zn-Ni-X (X=Cd, P) alloys. 1. Corrosion characteristics of Zn-Ni-Cd ternary alloys". United States. doi:10.1149/1.1393434.
@article{osti_20080578,
title = {Development of a new electrodeposition process for plating of Zn-Ni-X (X=Cd, P) alloys. 1. Corrosion characteristics of Zn-Ni-Cd ternary alloys},
author = {Durairajan, A. and Haran, B.S. and White, R.E. and Popov, B.N.},
abstractNote = {A new Zn-Ni-Cd plating process was developed which offers a unique way of controlling and optimizing the Ni and Cd contents in the final deposit. Zinc-nickel-cadmium alloy was deposited from a 0.5 M NiSO{sub 4} + 0.2 M ZnSO{sub 4} bath in the presence of 0.015 M CdSO{sub 4} and 1 g/L nonyl phenyl polyethylene oxide. Using this process a Zn-Ni-Cd ternary alloy, with a higher nickel content as compared to that obtained from conventional Zn-Ni baths, was synthesized. The Zn-Ni-Cd alloy coatings deposited from an electrolyte containing 0.015 M (0.3%) CdSO{sub 4} has a Zn to Ni ratio of 2.5:1. The increase in nickel content accounts for the observed decrease in the corrosion potential to a value lower than that of Cd but higher than the corrosion potential of iron. The coatings have superior corrosion resistance and barrier properties than the typical Zn-Ni and cadmium coatings. Polarization studies and electrochemical impedance spectroscopy analysis on Zn-Ni-Cd coatings show a barrier resistance that is ten times higher than that of a conventional Zn-Ni coating.},
doi = {10.1149/1.1393434},
journal = {Journal of the Electrochemical Society},
issn = {0013-4651},
number = 5,
volume = 147,
place = {United States},
year = {2000},
month = {5}
}