skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Vegetation/soil distribution of semivolatile organic compounds in relation to their physicochemical properties

Abstract

The concentrations (C) of several semivolatile organic compounds (SOCs) in Norway spruce needles (N) and in the local humus horizon (O) of 25 remote Austrian forest sites were used to calculate an ecosystem-oriented partition coefficient needles/humus horizon (C{sub N}/C{sub O}). Between 66 and 78% of the compounds' variation of this quotient could be explained by each of the following physicochemical parameters: vapor pressure (p{sub s}) and the partition coefficients n-octanol/water (K{sub OW}), n-octanol/air (K{sub OA}), and adsorbed/ dissolved in soil (K{sub OC}) of the compounds. This result further underlines the usefulness of these parameters for predicting the behavior of SOCs in terrestrial ecosystems. Compounds with low p{sub s} and high K{sub OW}, K{sub OA}, and K{sub OC} show a very low C{sub N}/C{sub O} quotient, which implies a higher accumulation of these compounds in the O horizon than in the needles. The role of forest soils as sink for these SOCs is demonstrated. Alternatively, C{sub N}/C{sub O} > 1, due to higher concentrations in the needles than in the O horizon, have been shown for SOCs with comparably high p{sub s} and low K{sub OW}, K{sub OA}, and K{sub OC}. In this respect, the possible role of revolatilization of themore » more volatile SOCs from soils to needles is discussed. In the mineral soil layers below the O horizon, SOCs with lower K{sub OC} and better water solubility tend to be less accumulated. However, if all investigated compounds are taken into consideration, accumulation in the mineral soil layers showed no general trend in relation to the selected physicochemical parameters.« less

Authors:
Publication Date:
Research Org.:
Federal Environment Agency, Wien (AT)
OSTI Identifier:
20080511
Resource Type:
Journal Article
Journal Name:
Environmental Science and Technology
Additional Journal Information:
Journal Volume: 34; Journal Issue: 9; Other Information: PBD: 1 May 2000; Journal ID: ISSN 0013-936X
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 63 RADIATION, THERMAL, AND OTHER ENVIRONMENTAL POLLUTANT EFFECTS ON LIVING ORGANISMS AND BIOLOGICAL MATERIALS; CARBON SINKS; SOILS; TERRESTRIAL ECOSYSTEMS; SPRUCES; SOIL CHEMISTRY; VOLATILE MATTER; ORGANIC COMPOUNDS; BIOLOGICAL INDICATORS; POLLUTION; LONG-RANGE TRANSPORT

Citation Formats

Weiss, P. Vegetation/soil distribution of semivolatile organic compounds in relation to their physicochemical properties. United States: N. p., 2000. Web. doi:10.1021/es990576s.
Weiss, P. Vegetation/soil distribution of semivolatile organic compounds in relation to their physicochemical properties. United States. doi:10.1021/es990576s.
Weiss, P. Mon . "Vegetation/soil distribution of semivolatile organic compounds in relation to their physicochemical properties". United States. doi:10.1021/es990576s.
@article{osti_20080511,
title = {Vegetation/soil distribution of semivolatile organic compounds in relation to their physicochemical properties},
author = {Weiss, P.},
abstractNote = {The concentrations (C) of several semivolatile organic compounds (SOCs) in Norway spruce needles (N) and in the local humus horizon (O) of 25 remote Austrian forest sites were used to calculate an ecosystem-oriented partition coefficient needles/humus horizon (C{sub N}/C{sub O}). Between 66 and 78% of the compounds' variation of this quotient could be explained by each of the following physicochemical parameters: vapor pressure (p{sub s}) and the partition coefficients n-octanol/water (K{sub OW}), n-octanol/air (K{sub OA}), and adsorbed/ dissolved in soil (K{sub OC}) of the compounds. This result further underlines the usefulness of these parameters for predicting the behavior of SOCs in terrestrial ecosystems. Compounds with low p{sub s} and high K{sub OW}, K{sub OA}, and K{sub OC} show a very low C{sub N}/C{sub O} quotient, which implies a higher accumulation of these compounds in the O horizon than in the needles. The role of forest soils as sink for these SOCs is demonstrated. Alternatively, C{sub N}/C{sub O} > 1, due to higher concentrations in the needles than in the O horizon, have been shown for SOCs with comparably high p{sub s} and low K{sub OW}, K{sub OA}, and K{sub OC}. In this respect, the possible role of revolatilization of the more volatile SOCs from soils to needles is discussed. In the mineral soil layers below the O horizon, SOCs with lower K{sub OC} and better water solubility tend to be less accumulated. However, if all investigated compounds are taken into consideration, accumulation in the mineral soil layers showed no general trend in relation to the selected physicochemical parameters.},
doi = {10.1021/es990576s},
journal = {Environmental Science and Technology},
issn = {0013-936X},
number = 9,
volume = 34,
place = {United States},
year = {2000},
month = {5}
}