skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Adsorption of mercury(II) by variable charge surfaces of quartz and gibbsite

Journal Article · · Soil Science Society of America Journal

The influence of pH, ionic strength, ligands (Cl, SO{sub 4}, PO{sub 4}), and metals (Ni and Pb) on the adsorption of Hg(II) by quartz and gibbsite was investigated to better understand the Hg(II) adsorption process and the impact of metals and ligands on this process. The triple layer model (TLM) was used to simulate Hg(II) adsorption on both surfaces. Mercury(II) adsorption from a 0.6 {micro}M Hg(II) solution varies as a function of pH, increasing to an adsorption maximum with increasing pH before tailing off to a constant level at high pH values. The pH at which maximum Hg(II) adsorption occurs (pH{sub max} {approximately} 4.5) is comparable to the pK{sub a} (3.2) for the hydrolysis of Hg{sup 2+} to form Hg(OH){sub 2}{sup 0}. Further, the Hg(II) adsorption edge shifts to much higher pH values in the presence of 0.001 M and 0.01 M Cl, which also corresponds to the pH at which Hg(OH){sub 2}{sup 0} is predicted to form. Only minor deviations in the degree of adsorption and the shape of the Hg(II) adsorption edge are influenced by ionic strength, suggesting the formation of inner-sphere surface complexes. However, Hg(II) adsorption can only be successfully modeled with consideration of the formation of both an outer-sphere surface complex [{approximately}XO{sup {minus}} - HgOH{sup +}] and an inner-sphere surface complex [{approximately}XOHg(OH){sub 2}{sup {minus}}]. Swamping concentrations (0.01 M) of SO{sub 4} and PO{sub 4} reduced Hg(II) adsorption on quartz, a result of the predicted formation of Hg(OH){sub 2}SO{sub 4}{sup 2{minus}}, Hg(OH){sub 2}H{sub 2}PO{sub 4}{sup {minus}}, and Hg(OH){sub 2}-HPO{sub 4}{sup 2{minus}} aqueous species (the adsorption edge and pH{sub max} were not influenced). The presence of SO{sub 4} also decreased Hg(II) retention by gibbsite, which was also attributed to the formation of the Hg(OH){sub 2}SO{sub 4}{sup 2{minus}} ion pair; however, the presence of PO{sub 4} increased Hg(II) retention by gibbsite, which was attributed to the formation of a phosphate bridge [{approximately}AlOPO{sub 3}Hg(OH){sub 2}{sup 2{minus}}]. Mercury(II) adsorption was decreased in the presence of 14 {micro}M Pb and 48 {micro}M Ni, and most noticeably in the quartz system. The adsorption of Hg(II), when in competition with Pb or Ni, could not be simulated by the TLM without the reoptimization of the Hg(II) outer- and inner-sphere log K{sub int} values. Intrinsic Hg(II) adsorption constants derived from single-element systems could not be employed to simulate adsorption in multi-element, competitive systems.

Research Organization:
Univ. of Florida, Gainesville, FL (US)
OSTI ID:
20062561
Journal Information:
Soil Science Society of America Journal, Vol. 63, Issue 6; Other Information: PBD: Nov-Dec 1999; ISSN 0361-5995
Country of Publication:
United States
Language:
English

Similar Records

Outer Sphere Adsorption of Pb(II)EDTA on Goethite
Technical Report · Fri Jul 16 00:00:00 EDT 1999 · OSTI ID:20062561

Vanadyl in natural waters: Adsorption and hydrolysis promote oxygenation
Journal Article · Sun Jan 01 00:00:00 EST 1989 · Geochimica et Cosmochimica Acta; (USA) · OSTI ID:20062561

Outer-sphere adsorption of Pb(II)EDTA on goethite
Journal Article · Fri Oct 01 00:00:00 EDT 1999 · Geochimica et Cosmochimica Acta · OSTI ID:20062561