skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Inventory of AI-ready Benchmark Data for US Fires, Heatwaves, and Droughts

Dataset ·
DOI:https://doi.org/10.25584/2004956· OSTI ID:2004956

Extreme weather events, including fires, heatwaves, and droughts, have significant impacts on earth, environmental, and energy systems. Mechanistic and predictive understanding, as well as probabilistic risk assessment of these extreme weather events, are crucial for detecting, planning for, and responding to these extremes. Records of extreme weather events provide an important data source for understanding present and future extremes, but the existing data needs preprocessing before it can be used for analysis. Moreover, there are many nonstandard metrics defining the levels of severity or impacts of extremes. In this study, we compile a comprehensive benchmark data inventory of extreme weather events, including fires, heatwaves, and droughts. The dataset covers the period from 2001 to 2020 with a daily temporal resolution and a spatial resolution of 0.5°×0.5° (~55km×55km) over the continental United States (CONUS), and a spatial resolution of 1km × 1km over the Pacific Northwest (PNW) region, together with the co-located and relevant meteorological variables. By exploring and summarizing the spatial and temporal patterns of these extremes in various forms of marginal, conditional, and joint probability distributions, we gain a better understanding of the characteristics of climate extremes. The resulting AI/ML-ready data products can be readily applied to ML-based research, fostering and encouraging AI/ML research in the field of extreme weather. This study can contribute significantly to the advancement of extreme weather research, aiding researchers, policymakers, and practitioners in developing improved preparedness and response strategies to protect communities and ecosystems from the adverse impacts of extreme weather events. Usage Notes We presented a long term (2001-2020) and comprehensive data inventory of historical extreme events with daily temporal resolution covering the separate spatial extents of CONUS (0.5°×0.5°) and PNW(1km×1km) for various applications and studies. The dataset with 0.5°×0.5° resolution for CONUS can be used to help build more accurate climate models for the entire CONUS, which can help in understanding long-term climate trends, including changes in the frequency and intensity of extreme events, predicting future extreme events as well as understanding the implications of extreme events on society and the environment. The data can also be applied for risk accessment of the extremes. For example, ML/AI models can be developed to predict wildfire risk or forecast HWs by analyzing historical weather data, and past fires or heateave , allowing for early warnings and risk mitigation strategies. Using this dataset, AI-driven risk assessment models can also be built to identify vulnerable energy and utilities infrastructure, imrpove grid resilience and suggest adaptations to withstand extreme weather events. The high-resolution 1km×1km dataset ove PNW are advantageous for real-time, localized and detailed applications. It can enhance the accuracy of early warning systems for extreme weather events, helping authorities and communities prepare for and respond to disasters more effectively. For example, ML models can be developed to provide localized HW predictions for specific neighborhoods or cities, enabling residents and local emergency services to take targeted actions; the assessment of drought severity in specific communities or watersheds within the PNW can help local authorities manage water resources more effectively.

Research Organization:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
2004956
Country of Publication:
United States
Language:
English